【题目】如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0.
(1)点A表示的数为 ;点B表示的数为 ;
(2)一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,设运动的时间为t(秒),
①当t=1时,甲小球到原点的距离为 ;乙小球到原点的距离为 ;当t=3时,甲小球到原点的距离为 ;乙小球到原点的距离为 ;
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请求出甲,乙两小球到原点的距离相等时经历的时间.
【答案】(1)﹣2,4;(2)①3,2;5,2;②能,或6.
【解析】
(1)根据非负数的性质求得a=﹣2,b=4;
(2)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)乙球从点B处开始向左运动,一直到原点O,此时OB的长度﹣乙球运动的路程即为乙球到原点的距离;(Ⅱ)乙球从原点O处开始向右运动,此时乙球运动的路程﹣OB的长度即为乙球到原点的距离;
②分两种情况:(Ⅰ)0<t≤2,(Ⅱ)t>2,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.
解:(1)∵|a+2|+|b﹣4|=0,
∴a+2=0,b﹣4=0,
解得:a=﹣2,b=4,
∴点A表示的数为﹣2,点B表示的数为4.
(2)①当t=1时,甲小球到原点的距离为2+1=3;乙小球到原点的距离为4﹣2=2;当t=3时,甲小球到原点的距离为2+3=5;乙小球到原点的距离为2×3﹣4=2.
②当0<t≤2时,得t+2=4﹣2t,
解得t=;
当t>2时,得t+2=2t﹣4,
解得t=6.
故当t=秒或t=6秒时,甲乙两小球到原点的距离相等.
故答案为:(1)﹣2,4;(2)①3,2;5,2.
科目:初中数学 来源: 题型:
【题目】如图,四边形是矩形,点的坐标为(0,6),点的坐标为(4,0),点从点出发,沿以每秒2个单位长度的速度向点出发,同时点从点出发,沿以每秒3个单位长度的速度向点运动,当点与点重合时,点、同时停止运动.设运动时间为秒.
(1)当时,请直接写出的面积为_____________;
(2)当与相似时,求的值;
(3)当反比例函数的图象经过点、两点时,
①求的值;
②点在轴上,点在反比例函数的图象上,若以点、、、为顶点的四边形是平行四边形,请直接写出所有满足条件的的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请同学们完成下列甲,乙两种商品从包装到销售的一系列问题;
(1)某包装车间有22名工人,每人每小时可以包装120个甲商品或者200个乙商品,且1个甲商品需要搭配2个乙商品装箱,为使每天包装的甲商品和乙商品刚好配置,应安排包装甲商品和乙商品的工人各多少名?
(2)某社区超市第一次用6000元购进一批甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,两种商品的进价和售价如下图所示:
甲 | 乙 | |
进价(元/件) | 22 | 30 |
售价(元/件) | 29 | 40 |
①超市将这批货全部售出一共可以获利多少元?
②该超市第二次分别以第一次同样的进价购进第二批甲、乙两种商品,其中乙商品的件数是第一批乙商品件数的3倍,甲商品的件数不变,甲商品按照原售价销售,乙商品在原价的基础上打折销售,第二批商品全部售出后获得的总利润比第一批获得的总利润多720元,求第二批乙商品在原价基础上打几折销售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】济宁市全运会会期间,邹城市投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+ bx;若将创收扣除投资和维修保养费用 称为游乐场的纯收益g(万元),g也是关于 x的二次函数;
(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;
(2)求纯收益g关于x的解析式;
(3)问设施开放几个月后,游乐场的纯收益达到最大;几个月后,能收回投资?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本) | 频数(人数) | 频率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合计 | 50 | c |
我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.36.
(1)统计表中的a、b、c的值;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两盒中各有3张卡片,卡片上分别标有数字﹣7、﹣1、3和﹣2、1、6,这些卡片除数字外都相同.把卡片洗匀后,从甲、乙两盒中各任意抽取1张,并把抽得卡片上的数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.
(1)列出这样的点所有可能的坐标;
(2)求这些点落在第二象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BD是ABCD对角线,AE⊥BD于点E,CF⊥BD于点F.
(1)求证:△ADE≌△CBF;
(2)连结CE,AF,求证:四边形AFCE为平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知线段AB=20cm,CD=2cm,线段在线段上运动,分别是AC,BC的中点.
(1)若=4cm,则=______cm.
(2)当线段在线段上运动时,试判断的长度是否发生变化?如果不变请求出的长度,如果变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲地的海拔高度是米,乙地的海拔高度比甲地海拔高度的倍多米,丙地的海拔高度比甲地海拔高度的倍少米.
(1) 三地的海拔高度和一共是多少米?;
(2) 乙地的海拔高度比丙地的海拔高度高多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com