【题目】如图,四边形是矩形,点的坐标为(0,6),点的坐标为(4,0),点从点出发,沿以每秒2个单位长度的速度向点出发,同时点从点出发,沿以每秒3个单位长度的速度向点运动,当点与点重合时,点、同时停止运动.设运动时间为秒.
(1)当时,请直接写出的面积为_____________;
(2)当与相似时,求的值;
(3)当反比例函数的图象经过点、两点时,
①求的值;
②点在轴上,点在反比例函数的图象上,若以点、、、为顶点的四边形是平行四边形,请直接写出所有满足条件的的坐标.
【答案】(1)3;(2)或;(3)①;②
【解析】
(1)BP=4-2t,BQ=3t,将t=1代入再利用三角形面积公式求得即可.
(2)当时分两种①,②情况讨论求解.
(3)①将,代入求解可得k.②根据平行四边形的性质,P、Q两点横纵坐标的差等于M、N横纵坐标的差,构造方程求解
解:(1)BP=4-2t,BQ=3t,当t=1时,三角形面积为=3.
(2)①当时,则
∴∴∴
∴
②当时,则
∴∴
∴,(不合题意,舍去)
综上,或
(3)①∵,
∴∴∴
②
根据①问k=12,t=1,P(2,6),Q(4,3)
设M点坐标为(x,0),N(a,)
根据平行四边形的性质,P、Q两点横纵坐标的差等于M、N横纵坐标的差,构造方程求解,
x-4=2-a,3=-6,
解得a=,x=.
所以M点坐标为
科目:初中数学 来源: 题型:
【题目】如图:在数轴上A点表示数a,B点表示数b,C点表示数C,b是最小的正整数,且a=﹣2,c=7.
(1)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
则AB= ,AC= ,BC= .(用含t的代数式表示)
(3)请问:3BC﹣2AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为(_______)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长沙市某学校在七年级部分班级推行智慧课堂试点,一年来,深受学生及家长好评,学校决定明年在更多班级进行推广,考虑到平板笔容易丢失和损坏,因此学校决定采购台平板电脑和一批平板笔(平板笔支数大于支).现从、两家公司了解到:平板电脑价格是每台元,平板笔每支元.公司的优惠政策为每台平板电脑赠送支平板笔,公司的优惠政策为所有项目都打九折.
(1)若设学校需要购买平板笔支,用含的代数式分别表示两家公司的总费用和;
(2)若学校确定购买台平板电脑和支平板笔且两家公司可以自由选择,你认为至少需要花费多少,请你计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA⊥OC,OB⊥OD,下面结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正确的有________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0.
(1)点A表示的数为 ;点B表示的数为 ;
(2)一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,设运动的时间为t(秒),
①当t=1时,甲小球到原点的距离为 ;乙小球到原点的距离为 ;当t=3时,甲小球到原点的距离为 ;乙小球到原点的距离为 ;
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请求出甲,乙两小球到原点的距离相等时经历的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com