精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,是直线,.平行吗?为什么?

解:,理由如下:

(已知)

(已知)

_________

(已知)

_________(等量代换)

【答案】两直线平行,同位角相等;∠BAE;等量代换;等式的性质;∠DAC;内错角相等,两直线平行.

【解析】

由平行线的性质可得,进而可得,而由易得,从而可得DAC,再根据平行线的判定即得结论.

解:,理由如下:

(已知),

(两直线平行,同位角相等),

(已知),

(等量代换),

(已知),

(等式的性质),

DAC (等量代换),

(内错角相等,两直线平行).

故答案为:两直线平行,同位角相等;;等量代换;等式的性质;∠DAC;内错角相等,两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AFCDCB平分∠ACDBD平分∠EBF,且BCBD,下列结论:① BC平分∠ABE;② ACBE;③ CBE+D90°;④ DEB2ABC.其中正确结论的个数有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

14x3(2x)

2 =1

3

4

5

64x5=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+m与反比例函数 相交于点A(6,2),与x轴交于B点,点C在直线AB上且 .过B、C分别作y轴的平行线交双曲线 于D、E两点.

(1)求m、k的值;
(2)求点D、E坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,顶点为(2,﹣1)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,3),连接AB.

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到,请解答下列问题:

1)写出图2中所表示的数学等式____________________________________

2)根据整式乘法的运算法则,通过计算验证上述等式.

3)利用(1)中得到的结论,解决下面的问题:

,则_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约元旦登山,甲、乙两人距地面的高度y(m)与登山时间x(min)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

则甲登山的的上升速度是 m/min

请求出甲登山过程中,距地面的高度y(m)与登山时间x(min)之间的函数关系式.

当甲、乙两人距地面高度差为70m时,求x的值(直接写出满足条件的x值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于点Pab),点Qcd),如果abcd,那么点P与点Q就叫作等差点.例如:点P42),点Q(﹣1,﹣3),因421﹣(﹣3)=2,则点P与点Q就是等差点.如图在矩形GHMN中,点H23),点N(﹣2,﹣3),MNy轴,HMx轴,点P是直线yx+b上的任意一点(点P不在矩形的边上),若矩形GHMN的边上存在两个点与点P是等差点,则b的取值范围为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明。(适当添加辅助线,其实并不难)

(1) (2) (3) (4)

查看答案和解析>>

同步练习册答案