【题目】(1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=.
①求∠ABC的度数;
②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由;
(2)如图2,已知ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC交⊙O于点E,连接DE.求证:DE=DC.
【答案】(1)45°;②直线PC与⊙O相切.理由见解析;(2)证明见解析.
【解析】试题分析:(1)①连结OA、OC,如图1,利用勾股定理的逆定理证明△OCA为等腰直角三角形,∠AOC=90°,然后根据圆周角定理易得∠ABC=45°;
②先根据切线的性质得∠OAP=90°,再证四边形APCO为平行四边形,加上∠AOC=90°,则可判断四边形AOCP为矩形,所以∠PCO=90°,然后根据切线得判断定理得到PC为⊙O的切线;
(2)根据平行四边形的性质得AB∥CD,AD∥BC,再由平行线的性质得∠B+∠A=180°,∠DCE=∠B,由圆内接四边形的性质得∠E+∠A=180°,易得∠DCE=∠E,则根据等腰三角形的判定定理即可得到DC=DE.
试题解析:(1)解:①连结OA、OC,如图1,
∵OA=OC=4,AC=4,
∴OA2+OC2=AC2,
∴△OCA为等腰直角三角形,∠AOC=90°,
∴∠ABC=∠AOC=45°;
②直线PC与⊙O相切.理由如下:
∵AP是⊙O的切线,
∴∠OAP=90°,
而∠AOC=90°,
∴AP∥OC,
而AP=OC=4,
∴四边形APCO为平行四边形,
∵∠AOC=90°,
∴四边形AOCP为矩形,
∴∠PCO=90°,
∴PC⊥OC,
∴PC为⊙O的切线;
(2)证明:∵四边形ABCD为平行四边形,
∴AB∥CD,AD∥BC,
∴∠B+∠A=180°,∠DCE=∠B,
∵∠E+∠A=180°,
∴∠E=∠B,
∴∠DCE=∠E,
∴DC=DE.
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
求证:
(1)△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OB为∠AOC的平分线,OD是∠COE的平分线.
(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD为多少度?
(2)如果∠AOE=140°,∠COD=30°,那么∠AOB为多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC为等边三角形,D、E分别为BC、AC边上的两动点(与点A、B、C不重合),且总使CD=AE,AD与BE相交于点F.
(1)求证:AD=BE;
(2)求∠BFD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.
(1)当0<t<5时,用含t的式子填空:
BP=_______,AQ=_______;
(2)当t=2时,求PQ的值;
(3)当PQ=AB时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中最适合使用普查方式收集数据的是( )
A.为制作校服,了解某班同学的身高情况
B.了解全市初三学生的视力情况
C.了解一种节能灯的使用寿命
D.了解我省农民的年人均收入情况
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com