| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 首先取$\widehat{AB}$的中点D,连接AD,BD,由∠AOB=2∠BOC,易得AD=BD=BC,继而证得AB<2BC,又由圆周角定理,可得∠AOB=4∠CAB,∠ACB=∠BOC=2∠CAB.
解答
解:取$\widehat{AB}$的中点D,连接AD,BD,
∵∠AOB=2∠BOC,
∴$\widehat{AB}$=2$\widehat{BC}$,故②正确,
∴$\widehat{AD}$=$\widehat{BD}$=$\widehat{BC}$,
∴AD=BD=BC,
∵AB<AD+BD,
∴AB<2BC.故①错误,
∵∠AOB=2∠BOC,∠BOC=2∠CAB,
∴∠AOB=4∠CAB,
∵∠AOB=2∠ACB,
∴∠ACB=∠BOC=2∠CAB,故③④正确.
故选C.
点评 此题考查了弧、弦与圆心角的关系以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{a-b}$ | B. | $\frac{1}{a+b}$ | C. | a-b | D. | a+b |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (4π+4)cm2 | B. | (4π+8)cm2 | C. | (8π+4)cm2 | D. | (4π-16)cm2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com