精英家教网 > 初中数学 > 题目详情
17.如图,OA、OB、OC都是⊙O的半径,若∠AOB是锐角,且∠AOB=2∠BOC,则下列结论正确的是(  )个
①AB=2BC   ②$\widehat{AB}$=2$\widehat{BC}$   ③∠ACB=2∠CAB   ④∠ACB=∠BOC.
A.1B.2C.3D.4

分析 首先取$\widehat{AB}$的中点D,连接AD,BD,由∠AOB=2∠BOC,易得AD=BD=BC,继而证得AB<2BC,又由圆周角定理,可得∠AOB=4∠CAB,∠ACB=∠BOC=2∠CAB.

解答 解:取$\widehat{AB}$的中点D,连接AD,BD,
∵∠AOB=2∠BOC,
∴$\widehat{AB}$=2$\widehat{BC}$,故②正确,
∴$\widehat{AD}$=$\widehat{BD}$=$\widehat{BC}$,
∴AD=BD=BC,
∵AB<AD+BD,
∴AB<2BC.故①错误,
∵∠AOB=2∠BOC,∠BOC=2∠CAB,
∴∠AOB=4∠CAB,
∵∠AOB=2∠ACB,
∴∠ACB=∠BOC=2∠CAB,故③④正确.
故选C.

点评 此题考查了弧、弦与圆心角的关系以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.计算(a-$\frac{b^2}{a}$)•$\frac{a}{a-b}$的结果是(  )
A.$\frac{1}{a-b}$B.$\frac{1}{a+b}$C.a-bD.a+b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,点D、E在BC上,AB=AC,AD=AE.∠BAD和∠CAE有怎样的关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知xa=2,xb=4,xc=5,求xa-2b+3c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.


问题思考:
(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹;
(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹;
问题拓展:
(3)如图3,两平面镜OM、ON相交于点O,且∠MON=20°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.一个商标图案如图4中阴影部分,在长方形ABCD中,AB=6cm,BC=4cm,以点A为圆心,AD为半径作圆与BA的延长线相交于点F,则阴影部分的面积是(  )
A.(4π+4)cm2B.(4π+8)cm2C.(8π+4)cm2D.(4π-16)cm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列两个三角形不一定相似的是(  )
A.两个等边三角形B.两个全等三角形
C.两个等腰直角三角形D.有一个30°角的两个等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是(  )
A.SASB.AASC.ASAD.SSS

查看答案和解析>>

同步练习册答案