【题目】已知抛物线C:y=x2+2x﹣3.
抛物线 | 顶点坐标 | 与x轴交点坐标 | 与y轴交点坐标 | |
抛物线C:y=x2+2x﹣3 | A(_____) | B(_____) | (1,0) | (0,﹣3) |
变换后的抛物线C1 | ______ | ______ | ______ | ______ |
(1)补全表中A,B两点的坐标,并在所给的平面直角坐标系中画出抛物线C.
(2)将抛物线C上每一点的横坐标变为原来的2倍,纵坐标变为原来的,可证明得到的曲线仍是抛物线,(记为C1),求抛物线C1对应的函数表达式.
【答案】(1)(-1,-4),(-3,0);A1(-2,-2),B1(-6,0),(2,0),(0,-).
,画图见解析;(2)y=(x+2)2-2=x2+x-.
【解析】
(1)利用配方法得到y=(x+1)2-4,根据二次函数的性质即可得到A点坐标,再令y=0得x2+2x-3=0,然后解方程即可得到B点坐标;再利用描点法画抛物线;
(2)利用抛物线C上每一点的横坐标变为原来的2倍,纵坐标变为原来的,得到点A的对应点A1(-2,-2),点B的对应点B1(-6,0),由于抛物线C1的顶点坐标为A1(-2,-2),然后设顶点式求出抛物线C1的解析式.
解:(1)y=x2+2x-3=(x+1)2-4,则顶点A的坐标为(-1,-4),
当y=0时,x2+2x-3=0,解得x1=-3,x2=1,则B点坐标为(-3,0),(1,0),
如图;
(2)点A的对应点A1(-2,-2),点B的对应点B1(-6,0),
由于抛物线C1的顶点是抛物线C的顶点的对应点,
所以抛物线C1的顶点坐标为A1(-2,-2),
设抛物线C1的解析式为y=a(x+2)2-2, 把点B1(-6,0)代入得a(-6+2)2-2=0,
解得a= ,
所以抛物线C1的解析式为y=(x+2)2-2=x2+x-.
科目:初中数学 来源: 题型:
【题目】如图1,已知Rt△ABC中,∠C=90°,点D在BC上,且CD=2,连接AD将Rt△ACD沿射线CB方向平移,得到Rt△A'C'D',C'到达B点时,停止平移,设平移距离为x,△A'C'D'与△ABC重合面积为S,且x与S的函数关系式如图2所示,(0<x≤6,与6<x≤n所对应的解析式不同).
(1)m= ,n= .
(2)写出S与x的函数关系式,直接写出x对应的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.
(1)请分别作出下图中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);
(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.
(1)在图1中,画出一个与△ABC成中心对称的格点三角形;
(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;
(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形;
(4)在图4中,画出所有格点△BCD,使△BCD为等腰直角三角形,且S△BCD=4.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在的网格图中,每个小正方形的边长均为,点和的顶点均为小正方形的顶点.
(1)以点O为位似中心,在网格图中作△ABC,使它与△ABC位似,且相似比为2;
(2)如图②,某台风过后,李明发现一棵被吹倾斜的大树与地面的夹角为,且其影子长为4.5米,同时李明还发现大树树干和影子形成的△DEF与△ABC相似(树干对应边),求大树在被吹倾斜前的高度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设二次函数的图象为C1.二次函数的图象与C1关于y轴对称.
(1)求二次函数的解析式;
(2)当≤0时,直接写出的取值范围;
(3)设二次函数图象的顶点为点A,与y轴的交点为点B,一次函数( k,m为常数,k≠0)的图象经过A,B两点,当时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为2,O到顶点A的距离为5,点B在⊙O上,点P是线段AB的中点,若B在⊙O上运动一周.
(1)点P的运动路径是一个圆;
(2)△ABC始终是一个等边三角形,直接写出PC长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,,,点是射线上的一个动点(点与点不重合),点是线段上的一个动点(点与点不重合),连接,过点作的垂线,交射线于点连接.设
(1)当时,求关于的函数关系式,并写出它的定义域;
(2)在(1)的条件下,取线段的中点,连接,若,求的长;
(3)如果动点在运动时,始终满足条件那么请探究:的周长是否随着动点的运动而发生变化?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上E处,EQ与BC相交于F,若AD=8 cm,AB=6 cm,AE=4cm,则△EBF的周长是______________ cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com