【题目】如图,△ABC中,AB=BC,CE∥AB,以AB为直径作⊙O,当CE是⊙O的切线时,切点为D.
(1)求:∠ABC的度数;
(2)若CD=3,求AC的长度.
【答案】(1)∠ABC=30°;(2)AC=.
【解析】
(1)连接OD,过B作BH⊥CD于H,由AB=BC,四边形BHDO是正方形,求得BH=BC,从而得到∠BCH=30°,然后利用平行线的性质求解;(2)设⊙O于AC交于F,连接BF,由切割线定理求解.
解:(1)连接OD,
∵CE是⊙O的切线,
∴OD⊥CE,
∵CD∥AB,
∴OD⊥AB,
过B作BH⊥CD于H,
则四边形BHDO是正方形,
∴BH=OD,
∵AB=BC,AB为⊙O的直径,
∴BH=BC,
∴∠BCH=30°,
∵CD∥AB,
∴∠ABC=30°;
(2)设⊙O于AC交于F,
连接BF,
∵AB为⊙O的直径,
∴BF⊥AC,
∵AB=BC,
∴CF=AC,
∵CD是⊙O的切线,AC是⊙O的割线,
由切割线定理得,CD2=CFAC=ACAC,
∴32=AC2,
∴AC=(负值舍去).
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+b与反比例函数的图象相交于点A(a,3),且与x轴相交于点B.
(1)求a、b的值;
(2)若点P在x轴上,且△AOP的面积是△AOB的面积的,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,OA=5,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则( )
A. 甲的结果正确
B. 乙的结果正确
C. 甲、乙的结果合在一起才正确
D. 甲、乙的结果合在一起也不正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.
(1)小丽参加实验A考查的概率是 ;
(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率;
(3)他们三人都参加实验A考查的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从点A出发,沿着A→C→A的方向运动,设点E的运动时间为秒(0≤t≤12),连接DE,当△CDE是直角三角形时,t的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线与双曲线相交于A(2,3),B两点,P是第一象限内的双曲线上在意一点,直线PA交x轴于点M,连接PB交x轴于点N,若∠APN = 90°,则PM的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为4的沿弦折叠,圆上点折叠后恰好与圆点重合,连接并延长交于点,连接.点为弧上一点,、分别为线段、上一动点,则周长的最小值为___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com