精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程.

1)证明该方程一定有两个不相等的实数根;

2)设该方程两根为x1x2x1<x2.

①当时,试确定y值的范围;

②如图,平面直角坐标系中有三点ABC,坐标分别为(x1,0)、(x2,3)、(70.以点C为圆心,2个单位长度为半径的圆与直线AB相切,求n的值.

【答案】1)见解析;(2)①当n<-3时,y<-3;②n= -

【解析】

1)根据根的判别式即可证明;

2解方程得,方程两根为33-,由n<-3得到<0,故3-,根据y=x2(n+x1) =3n+6,根据一次函数的性质即可求解;

②作CD⊥ABDDH⊥ACH.,A3,0),由C7,0),得CA=4,由圆C与直线AB相切,得CD=2,可得AD=2.利用SADC=,求得DH=,再得到点D坐标为(6),求出直线AB的函数关系式为y=,将点B的坐标代入直线方程得n= -,故可求解.

1)因为△=9>0,

所以该方程一定有两个不相等的实数根;

2

故方程两根为33-

因为n<-3,所以n+3<0,

所以<0,

所以3-.

所以x1=3x2=3-.

y=x2(n+x1)==3n+6

yn的一次函数,

因为3>0,所以yn的增大而增大,

所以当n<-3时,y<-3.

CD⊥ABDDH⊥ACH.

,A3,0),因为C7,0),

所以CA=4

因为圆C与直线AB相切,

所以CD=2,

可得AD==2.

因为SADC=

2,所以DH=,∴AH==3

∴点D坐标为(6.

设直线AB的函数关系式为y=kx+b,代入A3,0)、D6

,解得,.

所以直线AB的函数关系式为y=.

将点B的坐标代入直线方程得,×=3,

解得,n= -,经检验, n= -是方程的解,

所以n= -

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图已知在中,,直角的顶点的中点,两边分别交于点,给出以下五个结论正确的个数有(

;②;③;④是等腰直角三角形;⑤当内绕顶点旋转时(点不与重合),.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.

(1)求甲、乙两种树苗每棵的价格各是多少元?

(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A和点B都是反比例函数在第一象限内图象上的点,点A的横坐标为1,点B的纵坐标为1,连接AB,以线段AB为边的矩形ABCD的顶点DC恰好分别落在x轴,y轴的负半轴上,连接ACBD交于点E,若的面积为6,则k的值为(

A.2B.3C.6D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,两条高ADBE交于点P.过点E,垂足为G,交AD于点F,过点F,交BC于点H,交BE交于点Q,连接DE.

1)若,求DE的长

2)若,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题提出)我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半.那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系?

(初步思考)(1)如图,的弦,,点分别是优弧和劣弧上的点,则______°_______°

2)如图,的弦,圆心角,点P上不与AB重合的一点,求弦所对的圆周角的度数(用m的代数式表示).

(问题解决)(3)如图,已知线段,点C所在直线的上方,且.用尺规作图的方法作出满足条件的点C所组成的图形(不写作法,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于AB两点,与y轴交于C点,且A10).

1)求抛物线的解析式及顶点D的坐标;

2)判断ABC的形状,证明你的结论;

3)点M是抛物线对称轴上的一个动点,当CM+AM的值最小时,求M的坐标;

4)在线段BC下方的抛物线上有一动点P,求PBC面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yx2mxn经过点A(30)

B(03),点P是直线AB上的动点,过点Px轴的垂线交抛物线于点M,设点P的横

坐标为t

(1)分别求出直线AB和这条抛物线的解析式.

(2)若点P在第四象限,连接AMBM,当线段PM最长时,求ABM的面积.

(3)是否存在这样的点P,使得以点PMBO为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程:

1)(x3224

2x2+12x+270

3x2+6x4

42x323x3

查看答案和解析>>

同步练习册答案