【题目】如图,在中,,两条高AD,BE交于点P.过点E作,垂足为G,交AD于点F,过点F作,交BC于点H,交BE交于点Q,连接DE.
(1)若,,求DE的长
(2)若,求证:.
【答案】(1);(2)详见解析.
【解析】
(1)首先证明AE=CE,在Rt△ADC中,根据勾股定理求出AC的长,再运用直角三角形斜边上的中线的性质计算即可;
(2)连接DQ,根据等腰三角形的性质得,进而证明和是等腰直角三角形,再证明和得,故可证为等腰直角三角形,,结合(1)的结论易证得.
(1)∵,BE是高,
∴
∵AD是的高,
∴
在中,.
∴.
∴
(2)连接DQ
∵,BE是AC边上的高,,
∴BE平分,,
∴
∵,∴,
∵AD是BC边上的高,
∴
∴和是等腰直角三角形.
∴,.∴
∵,,,
∴,,
∴.
∵,,,
∴(AAS)
∴
又∵,,
∴(SAS)
∴,
∵,∴,即
∴为等腰直角三角形
∴
由(1)已证
∴,
∵,
∴
科目:初中数学 来源: 题型:
【题目】在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根
据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在C处看到西北方向上有一凉亭A,北偏东°的方向上有一棵大树B,已知凉亭A在大树B的正西方向,若BC=米,则A、B两点相距 ( )
A.米B.米
C.米D.米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数C1:y1=ax2+2ax+a-1(a≠0).
(1)把二次函数C1的表达式化成y=a(x-h)2+b(a≠0)的形式 ,并写出顶点坐标 ;
(2)已知二次函数C1的图象经过点A(-3,1).
①a的值 ;
②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,则k的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数为常数,中的与的部分对应值如下表:
x | -1 | 0 | 3 |
y | n | -3 | -3 |
当时,下列结论中一定正确的是________(填序号即可)
①;②当时,的值随值的增大而增大;③;④当时,关于的一元二次方程的解是,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.
①抛物线y=-x2+2x+m+1与直线y=m+2有且只有一个交点;
②若点M(-2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;
③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=-(x+1)2+m;
④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为.
其中正确判断有( )
A.①②③④B.②③④C.①③④D.①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图像经过点A(4,4),B(5,0)和原点O,点P为抛物线上的一个动点,过点P作x轴的垂线,垂足为D(m,0)(m>0),并与直线OA交于点C.
(1)求出抛物线的函数表达式;
(2)连接OP,当S△OPC=S△OCD时,求出此时的点P坐标;
(3)在直线OA上取一点M,使得以P、C、M为顶点的三角形与△OCD全等,求出点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com