精英家教网 > 初中数学 > 题目详情

【题目】两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有________(填序号)

小红的运动路程比小兰的长;两人分别在1.09秒和7.49秒的时刻相遇;当小红运动到点D的时候,小兰已经经过了点D 4.84秒时,两人的距离正好等于O的半径.

【答案】

【解析】

利用图象信息一一判断即可解决问题.

解:①由图可知,速度相同的情况下,小红比小兰提前停下来,时间花的短,故小红的运动路程比小兰的短,故本选项不符合题意;
②两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;
③当小红运动到点D的时候,小兰也在点D,故本选项不符合题意;
④当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t=

=4.84,故本选项正确;
故答案为:④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形为正方形,为对角线上的动点,过点交射线,交射线

(1)求证;

(2)求证;

(3),当时,直接写出的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:

(1)求n的值;

(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;

(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ACB90°AC15sinBAC.点D在边AB上(不与点AB重合),以AD为半径的⊙A与射线AC相交于点E,射线DE与射线BC相交于点F,射线AF与⊙A交于点G

1)如图,设ADx,用x的代数式表示DE的长;

2)如果点E的中点,求∠DFA的余切值;

3)如果△AFD为直角三角形,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=10BC=mEBC边上一点,沿AE翻折△ABE,点B落在点F处.

1)连接CF,若CF//AE,求EC的长(用含m的代数式表示);

2)若EC=,当点F落在矩形ABCD的边上时,求m的值;

3)连接DF,在BC边上是否存在两个不同位置的点E,使得?若存在,直接写出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 经过点,与轴相交于两点,

1)抛物线的函数表达式;

2)点在抛物线的对称轴上,且位于轴的上方,将沿沿直线翻折得到,若点恰好落在抛物线的对称轴上,求点和点的坐标;

3)设是抛物线上位于对称轴右侧的一点,点在抛物线的对称轴上,当为等边三角形时,求直线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.

(1)求证:四边形AECD为平行四边形;

(2)连接CO,求证:CO平分∠BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,骰子有六个面并分别标有数123456,如图2,正六边形顶点处各有一个圈,跳圈游戏的规则为:游戏者掷一次骰子,骰子向上的一面上的数字是几,就沿正六边形的边顺时针方向连续跳几个边长.

如:若从圈起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈;若第二次掷得2,就从开始顺时针连续跳2个边长,落到圈;……设游戏者从圈起跳.

1)小明随机掷一次骰子,求落回到圈的概率

2)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈的概率,并指出他与小明落回到圈的可能性一样吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB

1)求证:BD是⊙O的切线;

2)当AB10BC8时,求BD的长.

查看答案和解析>>

同步练习册答案