【题目】某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副羽毛球拍送2个羽毛球.
设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:
(1)分别写出yA、yB与x之间的关系式;
(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?
(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
【答案】解:(1)由题意,得
yA=(10×30+30x)×0.9=27x+270,
yB=10×30+30(x﹣2)=30x+240。
(2)当yA=yB时,27x+270=30x+240,得x=10;
当yA>yB时,27x+270>30x+240,得x<10;
当yA<yB时,27x+270=30x+240,得x>10。
∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算。
(3)由题意知x=15>10,
∴选择A超市,yA=27×15+270=675元,
先选择B超市购买10副羽毛球拍,送20个羽毛球,
然后在A超市购买剩下的羽毛球(10×15﹣20)×3×0.9=351元,
共需要费用10×30+351=651(元)。
∵651<675,
∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球。.
【解析】试题分析:(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;
(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;
(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.
试题解析:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;
yB=10×30+3(10x﹣20)=30x+240;
(2)当yA=yB时,27x+270=30x+240,得x=10;
当yA>yB时,27x+270>30x+240,得x<10;
当yA<yB时,27x+270<30x+240,得x>10
∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.
(3)由题意知x=15,15>10,
∴选择A超市,yA=27×15+270=675(元),
先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:
(10×15﹣20)×3×0.9=351(元),
共需要费用10×30+351=651(元).
∵651元<675元,
∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
科目:初中数学 来源: 题型:
【题目】一盒方便面的包装袋上标有重量150g±5g,保质期为≤180天,生产日期为2017.01.31它们的含义是什么?某同学于2017年11月2日买到这盒方便面称得其重量为148g。这盒方便面合格吗?还能不能食用?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. 有且只有一条直线垂直于已知直线。
B. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
C. 互相垂直的两条线段一定相交。
D. 直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线c的距离是3cm。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道几个非负数的和等于0,只有这几个数同时等于0才成立,如(x-2)2+│y+3│=0,因为(x-2)2,│y+3│都是非负数,则x-2=0,即可求x=2,y+3=0,可求y=-3,应用知识解决下列各题:
(1)若(x+1)2+(y-2)2=0,求x,y的值.
(2)若x2+y2+6x-4y+13=0,求(x+y)2019的值;
(3)若2x2+3y2-8x+6y= -11,求(x+y)2019的值;
(4)代数式x2-4x-3它有最大值吗?它有最小值吗?若有请求出它的最大或最小值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国移动公司有神州行和大众卡两种业务。神州行免月租,打市内电话0.39元/分;大众卡月租16元,打市内通话0.15元/分,用户可以任选其一:
(1)请你分别写出两种业务中用户每月应支付的费用y(元)与打市内电话时间x(分)之间的函数关系式;
(2)若某用户估计一个月内打市内电话的时间为70分钟,你认为选择哪种业务较为合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=-(x-m)2+1与x轴的交点为A,B(B在A的右边),与y轴的交点为C.
(1)写出m=1时与抛物线有关的三个正确结论;
(2)当点B在原点的右边,点C在原点下方时,是否存在△BOC为等腰三角形的情形?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某巡警骑摩托车在一条南北大道上巡逻。某天他从岗亭出发,晚上停留在A处。规定向北方向为正。当天行驶记录如下(单位:千米).
+10,8,+6,13,+7,12,+3,2
①该巡警巡逻时离岗亭最远是多少千米?
②在岗亭北面6千米处有个加油站,该巡警巡逻时经过加油站几次?
③A在岗亭何方距岗亭多远?
④若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两架飞机从同一机场同时出发反向而飞,甲飞机顺风飞行,乙飞机逆风飞行。 已知两飞机在无风的速度都是50千米每小时,风速是a千米每小时。
求:(1)5小时后两机相距多远?
(2)5小时后,甲飞机比乙飞机多航行多少千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com