精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,的平分线,点上,经过点两点,与分别交于点

1)求证:相切;

2)若,求的半径的长.

【答案】1)见解析;(2

【解析】

1)连接OD,根据等边对等角可得∠OAD=ODA,然后根据角平分线的定义可得∠CAD=OAD,从而证出∠CAD=ODA,根据平行线的判定定理可得ODAC,从而证出ODBC,然后根据切线的判定定理即可证出结论;

2)连接DF,根据勾股定理求出AD,然后根据相似三角形的判定定理证出△CAD∽△DAF,列出比例式即可求出AF,从而求出圆的半径,然后利用平行证出△BOD∽△BAC,然后列出比例式即可求出BC

1)证明:连接OD

OA=OD

∴∠OAD=ODA

的平分线,

∴∠CAD=OAD

∴∠CAD=ODA

ODAC

∴∠ODB=ACB=90°

ODBC

相切;

2)连接DF

RtACD中,AD==

AF为直径

∴∠ADF=90°

∴∠ACD=ADF

∵∠CAD=DAF

∴△CAD∽△DAF

解得:AF=

的半径==

ODAC

∴△BOD∽△BAC

解得:BC=8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,已知抛物线yax23x+cy轴交于点A0,﹣4),与x轴交于点B40),点P是线段AB下方抛物线上的一个动点.

1)求这条抛物线的表达式及其顶点的坐标;

2)当点P移动到抛物线的什么位置时,∠PAB90°求出此时点P的坐标;

3)当点P从点A出发,沿线段AB下方的抛物线向终点B移动,在移动中,设点P的横坐标为tPAB的面积为S,求S关于t的函数表达式,并求t为何值时S有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PFAE于F,设PA=x。

(1)求证:PFA∽△ABE;

(2)若以P,F,E为顶点的三角形也与ABE相似,试求x的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC的边ABAC的外侧分别作等边ABD和等边△ACE,连接DCBE

1)求证:DCBE

2)若BD3BC4 BD⊥BC于点B,请求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于的函数的图象与坐标轴只有两个不同的交点点坐标为,则的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行三级价差,各阶梯水价均为用户终端水价,具体如下:

第一阶梯:年用水量及以下,终端水价为/

第二阶梯:年用水量(含),终端水价为/

第三阶梯:年用水量以上,终端水价为/

城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.

设某户居民2019年的年用水量为,应缴水费为(元).

1)写出该户居民2019年的年用水量为含)的之间的函数表达式.

2)若该户居民2019年的应缴水费为元,则该户居民2019年的年用水量为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是⊙O的内接三角形,∠BAC的平分线交⊙O于点D

I)如图①,若BC是⊙O的直径,BC4,求BD的长;

)如图②,若∠ABC的平分线交AD于点E,求证:DEDB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明研究了这样一道几何题:如图1,在中,把绕点顺时针旋转得到,把绕点逆时针旋转得到,连接.当时,请问上的中线的数量关系是什么?以下是他的研究过程:

特例验证:(1)①如图2,当为等边三角形时,猜想的数量关系为_______;②如图3,当时,则长为________

猜想论证:(2)在图1中,当为任意三角形时,猜想的数量关系,并给予证明.

拓展应用:(3)如图4,在四边形,在四边形内部是否存在点,使之间满足小明探究的问题中的边角关系?若存在,请画出点的位置(保留作图痕迹,不需要说明)并直接写出的边上的中线的长度;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边上,为边上一动点,连接关于所在直线对称,点分别为的中点,连接并延长交所在直线于点,连接.当为直角三角形时,的长为_________

查看答案和解析>>

同步练习册答案