【题目】已知△ABC是⊙O的内接三角形,∠BAC的平分线交⊙O于点D.
(I)如图①,若BC是⊙O的直径,BC=4,求BD的长;
(Ⅱ)如图②,若∠ABC的平分线交AD于点E,求证:DE=DB.
【答案】(I)BD=2;(II)见解析.
【解析】
(I)连接OD,易证△DOB是等腰直角三角形,由勾股定理即可求出BD的长;
(II)由角平分线的定义结合(1)的结论即可得出∠CBD+∠CBE=∠BAE+∠ABE,再根据三角形外角的性质即可得出∠EBD=∠DEB,由此即可证出BD=DE.
解:(I)连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵∠BAC的平分线交⊙O于点D,
∴∠BAD=∠CAD=45°,
∴∠BOD=90°,
∵BC=4,
∴BO=OD=2,
∴;
(II)证明:∵BE平分∠ABC,
∴∠ABE=∠CBE.
∵∠BAD=∠CBD,
∴∠CBD+∠CBE=∠BAE+∠ABE.
又∵∠DEB=BAE+∠ABE,
∴∠EBD=∠DEB,
∴BD=DE.
科目:初中数学 来源: 题型:
【题目】《孙子算经)是我国传统数学的重要著作之一,其中记载的“荡杯问题”非常有趣.原题是今有妇人河上荡杯,津吏问日:“杯何以多?”妇人日:“有客.”津吏日:“客几何?”妇人日:“两人共饭,三人共羹,四人共肉,凡用杯六十五.不知客几何?”
大意:一个妇女在河边洗碗,河官问:“洗多少碗?有多少客?”妇女答:“洗只碗,客人二人.共用一只饭碗,三人共用一只汤碗,四人共用一只肉碗.问:有多少客人用餐?”请解答上述问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,是的外接,是直径,是外一点且满足,连接.
(1)求证:是的切线;
(2)若,,,求直径的长;
(3)如图2,当时,与交于点,试写出、、之间的数量关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】[问题发现]如图1,半圆的直径是半圆上的一个动点,则面积的最大值是_.
[问题解决]如图2所示的是某街心花园的一角.在扇形中,米,在围墙和上分别有两个入口和且米,是的中点,出口在上.现准备沿从入口到出口铺设两条景观小路,在四边形内种花,在剩余区域种草.
①出口设在距直线多远处可以使四边形的面积最大?最大面积是多少?(小路宽度不计)
②已知铺设小路所用的普通石材每米的造价是元,铺设小路所用的景观石材每米的造价是元问:在上是否存在点,使铺设小路和的总造价最低?若存在,请求出最低总造价和出口距直线的距离;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的正方形网格中,每个小正方形的边长均为1个单位,均在格点上,按如下要求作图.
(1)将线段绕点按顺时针方向旋转90°,点对应点为点;
(2)以为对角线画一个各边都不相等的四边形,且,此时四边形的面积为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并按要求完成相应的任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数、公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和 r 分别为外接圆和内切圆的半径,O 和 I 分别为其外心和内心,则OI R2Rr .
下面是该定理的证明过程(借助了第(2)问的结论):
延长AI 交⊙O 于点 D,过点 I 作⊙O 的直径 MN,连接 DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI.∴,∴ IA ID IM IN ①
如图②,在图 1(隐去 MD,AN)的基础上作⊙O 的直径DE,连接BE,BD,BI,IF
∵DE 是⊙O 的直径,∴∠DBE=90°.
∵⊙I 与 AB 相切于点 F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB.
∴,∴②,
由(2)知:,
∴
又∵,
∴ 2Rr(R d )(R d ) ,
∴ R d 2Rr
∴ d R 2Rr
任务:(1)观察发现: IM R d , IN (用含R,d 的代数式表示);
(2)请判断 BD 和 ID 的数量关系,并说明理由.(请利用图 1 证明)
(3)应用:若△ABC 的外接圆的半径为 6cm,内切圆的半径为 2cm,则△ABC 的外心与内心之间的距离为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.则图中阴影部分的面积为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.
(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?
(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;
(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com