精英家教网 > 初中数学 > 题目详情

【题目】阅读理解:

在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x2x≥2两种情况讨论:

①当x2时,原方程可化为-3x-2=-x-2+4,解得:x=0,符合x2

②当x≥2时,原方程可化为3x-2=x-2+4,解得:x=4,符合x≥2

∴原方程的解为:x=0x=4

解题回顾:本题中2x-2的零点,它把数轴上的点所对应的数分成了x2x≥2两部分,所以分x2x≥2两种情况讨论.

知识迁移:

1)运用整体思想先求|x-3|的值,再去绝对值符号的方法解方程:|x-3|+8=3|x-3|

知识应用:

2)运用分类讨论先去绝对值符号的方法解类似的方程:|2-x|-3|x+1|=x-9

(提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?)

【答案】1;(2=-14=.

【解析】

1)先把|x-3|-3|x-3|=-8看作是关于|x-3|的一元一次方程,可解得|x-3|=4,再去绝对值得到x-3=±4,然后解两个一元一次方程即可;
22-x的零点为2x+1的零点为-1,这样分三个区间进行讨论:当x-1;当-1x2;当-1x2;在各区间分别去绝对值化为一元一次方程,解方程,然后得到满足条件的x的值.

解:(1)移项得|x-3|-3|x-3|=-8

合并得-2|x-3|=-8

两边除以-2|x-3|=4

所以x-3=±4

x=-17

2)当x-1,原方程可化为2-x+3x+1=x-9,解得x=-14,符合x-1

-1x2,原方程可化为2-x-3x+1=x-9,解得x=,符合-1x2

x2,原方程可化为-2+x+3x+1=x-9,解得x=,不符合x2
∴原方程的解为x=-14x=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学学生会为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如图所示的两幅不完整的统计图.(把圆分成面积相等的两部分)请根据图中提供的信息,解答下列问题:

1)参加调查的人数共有_______人;在扇形图中,表示其它球类的扇形的圆心角为______度;

2)将条形图补充完整;

3)若该校有名学生,估计喜欢乒乓球的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中:

3x=﹣4系数化为1x=﹣

52x移项得x52

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括号得4x23x91

其中正确的个数有(  )

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结沦中,错误的有(  )

①Rt△ABC中,已知两边分别为3和4,则第三边的长为5;②三角形的三边分别为a、b、c,若a2+b2=c2,则∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,则这个三角形是一个直角三角形;④若(x﹣y)2+M=(x+y)2成立,则M=4xy.

A. 0个 B. 1个 C. 2个 D. 3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABDEACDFAC=DF下列条件中不能判断ABC≌△DEF的是(  )

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB和线段CD都在数轴上,点ACDB起始位置所表示的数分别为-20312;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.

1)用含有t的代数式表示AC的长为多少,当t=2秒时,AC的长为多少.

2)当0t9AC+BD等于多少,当t9AC+BD等于多少.

3)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】历史上对勾股定理的一种证法采用了如图所示图形,其中两个全等的直角三角形边AE,EB在一条直线上.证明中用到的面积相等关系是 ( )

A. SEDA=SCEB

B. SEDA +SCEB=SCDB

C. S四边形CDAE= S四边形CDEB

D. SEDA+SCDE+SCEB= S四边形ABCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ly =x,过点A01)作y轴的垂线交直线于点B,过点B作直线l的垂线交y轴于点A1;过点A1y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2按此作法继续下去,则点A2019的坐标为( )

A. 042019 B. 042018 C. 032019 D. 032018

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作与探究

综合实践课,老师把一个足够大的等腰直角三角尺AMN靠在一个正方形纸片ABCD的一侧,使边AM与AD在同
一直线上(如图1),其中∠AMN=90°,AM=MN.
(1)猜想发现
老师将三角尺AMN绕点A逆时针旋转α.如图2,当0<α<45°时,边AM,AN分别与直线BC,CD交于点E,F,连结EF.小明同学探究发现,线段EF,BE,DF满足EF=BE﹣DF;如图3,当45°<α<90°时,其它条件不变.
①填空:∠DAF+∠BAE=度;
②猜想:线段EF,BE,DF三者之间的数量关系是:
(2)证明你的猜想;
(3)拓展探究
在45°<α<90°的情形下,连结BD,分别交AM,AN于点G,H,如图4连结EH,试证明:EH⊥AN.

查看答案和解析>>

同步练习册答案