精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,有两点,若满足:当时,;当时,,则称点为点的“友好点”.

(1)点的“友好点”的坐标是_______.

(2)点是直线上的一点,点是点的“友好点”.

①当点与点重合时,求点的坐标.

②当点与点不重合时,求线段的长度随着的增大而减小时,的取值范围.

【答案】1;(2的坐标是;②当时,的长度随着的增大而减小;

【解析】

1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B点坐标,A点又在直线上,得到;①当点和点重合,得.解出即可,②当点A和点B不重合, .所以对a分情况讨论,1°、当时,,所以当a时,的长度随着的增大而减小,即取.2°当时,,当时,的长度随着的增大而减小,即取 综上,当时,的长度随着的增大而减小.

1)点41,根据“友好点”定义,得到点的“友好点”的坐标是

2是直线上的一点,

,根据友好点的定义,点的坐标为

①当点和点重合,

解得

时,;当时,

的坐标是

②当点A和点B不重合,

时,

a时,的长度随着的增大而减小,

时,

时,的长度随着的增大而减小,

综上,当时,的长度随着的增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将两个等腰RtADERtABC如图放置在一起,其中∠DAE=∠ABC90°.点EAB上,ACDE交于点H,连接BHCE,且∠BCE15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tanBCD;④;正确的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,ABAC,点PBC上的一点,PNAC于点NPMAB于点MCGAB于点G点.

1)则线段CGPMPN三者之间的数量关系是 

2)如图,若点PBC的延长线上,则线段CGPMPN三者是否还有上述关系,若有,请说明理由,若没有,猜想三者之间又有怎样的关系,并证明你的猜想;

3)如图,点E在正方形ABCD的对角线AC上,且AEAD,点PBE上任一点,PNAB于点NPMAC于点M,若正方形ABCD的面积是12,请直接写出PM+PN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点在边上,且,点的中点,点为边上的动点,当点上移动时,使四边形周长最小的点的坐标为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的顶点在函数的图象上,,边轴上,点为斜边的中点,连续并延长交轴于点,连结,若的面积为,则的值为

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面数据,得到条形统计图:

样本数据的平均数、众数、中位数如下表所示:

统计量

平均数

众数

中位数

数值

23

m

21

根据以上信息,解答下列问题:

(1)上表中众数m的值为   

(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据   来确定奖励标准比较合适.(填平均数”、“众数中位数”)

(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB90°,分别以点AC为圆心,以大于AC的长为半径画弧,两弧相交于点DE,作直线DEAB于点F,交AC于点G,连接CF,以点C为圆心,以CF的长为半径画弧,交AC于点H.若∠A30°,BC2,则AH的长是(  )

A. B. 2C. +1D. 22

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.

(1)求抛物线对应的函数关系式;

(2)若把ABO沿x轴向右平移得到DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;

(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得PBD的周长最小,求出P点的坐标;

(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作BD交x轴于点N,连接PM、PN,设OM的长为t,PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在RtABC中,∠ACB=90°,ABC=30°,则:AC=AB.

探究结论:小明同学对以上结论作了进一步研究.

(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BECE之间的数量关系为  

(2)如图2,点D是边CB上任意一点,连接AD,作等边ADE,且点E在∠ACB的内部,连接BE.试探究线段BEDE之间的数量关系,写出你的猜想并加以证明.

(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BEDE之间存在怎样的数量关系?请直接写出你的结论  

拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点Bx轴正半轴上的一动点,以AB为边作等边ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.

查看答案和解析>>

同步练习册答案