【题目】如图,⊙O的半径为1,弦AB=,BC=,AB,BC在圆心O的两侧,弧AC上有一动点D,AE⊥BD于点E,当点D从点C运动到点A时,则点E所经过的路径长为__________.
【答案】
【解析】
如图,连接OA,OB,作OH⊥BC于H,AQ⊥BC于Q,取AB的中点K,连接KQ.点E的运动轨迹是图中的红线,求出圆心角∠AKQ即可解决问题.
解:如图,连接OA,OB,作OH⊥BC于H,AQ⊥BC于Q,取AB的中点K,连接KQ.
∵OH⊥BC,
∴BH=CH=,
∴cos∠OBH=,
∴∠OBH=30°,
∵AB=,OA=OB=1,
∴AB2=OA2+OB2,
∴∠AOB=90°,
∴∠ABO=∠OAB=45°,
∴∠ABC=75°,
∵∠AQB=90°,AK=KB,
∴KB=KO,
∴∠KBQ=∠KQB=75°,
∴∠AKQ=∠KBQ+∠KQB=150°,
∵点E的运动轨迹是图中的红线,
∴点E所经过的路径长=.
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,AC与相交于点O,N是AO的中点,点M在BC边上,P是OD的中点,过点P作PM⊥BC于点M,交于点N′,则PN-MN′的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD交CD的延长线于点E,DA平分∠BDE.
⑴求证:AE是⊙O的切线;
⑵若AE=4cm,CD=6cm,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在学习“圆的对称性”时知道结论:垂直于弦的直径一定平分这条弦,请尝试解决问题:如图,在Rt△ACB中,∠ACB=90°,圆O是△ACB的外接圆.点D是圆O上一点,过点D作DE⊥BC,垂足为E,且BD平分∠ABE,
(1)判断直线ED与圆O的位置关系,并说明理由.
(2)若AC=12,BC=5,求线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=4,∠ADN=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N.连接MD、AN,
(1)求证:四边形AMDN是平行四边形;
(2)填空:
①当AM的值为_____时,四边形AMON是矩形;
②当AM的值为______时,四边形AMDN是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.
(1)求证:;
(2)当点P在射线AD上运动时,设PA=X,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接ED,则DE的长度是_____,B′D的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).
根据以上信息回答下列问题:
(1)训练后学生成绩统计表中,并补充完成下表:
(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?
(3)经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,连接AE、BD交于点O. AE与DC交于点M,BD与AC交于点N.
(1)如图①,求证:AE=BD;
(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com