【题目】如图,反比例函数y=与一次函数y=ax+b的图象交于点A(﹣2,6)、点B(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.
【答案】(1)y=﹣,y=x+7;(2)点E的坐标为(0,6)或(0,8)
【解析】
(1)先把A点坐标代入y=中求出k得到反比例函数解析式为y=﹣,再利用反比例函数解析式确定B(﹣12,1),然后利用待定系数法求一次解析式;
(2)设一次函数图象与y轴的交点为Q,易得Q(0,7),设E(0,m),利用三角形面积公式,利用S△AEB=S△BEQ﹣S△AEQ得到|m﹣7|×(12﹣2)=5,然后解方程求出m即可得到点E的坐标.
解:(1)把A(﹣2,6)代入y=得k=﹣2×6=﹣12,
∴反比例函数解析式为y=﹣,
把B(n,1)代入y=﹣得n=﹣12,则B(﹣12,1),
把A(﹣2,6)、B(﹣12,1)代入y=ax+b得,解得,
∴一次函数解析式为y=x+7;
(2)设y=x+7与y轴的交点为Q,易得Q(0,7),设E(0,m),
∴S△AEB=S△BEQ﹣S△AEQ=5,
|m﹣7|×(12﹣2)=5,解得m1=6,m2=8.
∴点E的坐标为(0,6)或(0,8).
科目:初中数学 来源: 题型:
【题目】如图所示,已知点的横坐标为2,将点向右平移2个单位,再向下平移2个单位得到点,且、两点均在双曲线上.
(1)求反比例函数的解析式.(2)若直线于反比例函数的另一交点为,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,.点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.作于,连接,设运动时间为,解答下列问题:
(1)设的面积为,求与之间的函数关系式,的最大值是 ;
(2)当的值为 时,是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】木工师傅可以用角尺测量并计算出圆的半径r.用角尺的较短边紧靠⊙O,角尺的顶点B(∠B=90°),并使较长边与⊙O相切于点C.
(1)如图,AB<r,较短边AB=8cm,读得BC长为12cm,则该圆的半径r为多少?
(2)如果AB=8cm,假设角尺的边BC足够长,若读得BC长为acm,则用含a的代数式表示r为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校今年学生节期间准备销售一种成本为每瓶4元的饮料.据去年学生节试销情况分析,按每瓶5元销售,一天能售出500瓶;在此基础上,销售单价每涨0.1元,该日销售量就减少10瓶.针对这种饮料的销售情况,请解答以下问题:
(1)设销售单价为每瓶x元,当日销售量为y元,求y与x的函数关系式(不写出x的取值范围);
(2)设该日销售利润为w元,求w与x的函数关系式(不写出x的取值范围);
(3)该日销售利润为800元,求销售单价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平台AB上有一棵直立的大树CD,平台的边缘B处有一棵直立的小树BE,平台边缘B外有一个向下的斜坡BG.小明想利用数学课上学习的知识测量大树CD的高度.一天,他发现大树的影子一部分落在平台CB上,一部分落在斜坡上,而且大树的顶端D与小树顶端E的影子恰好重合,且都落在斜坡上的F处,经测量,CB长5米,BF长2米,小树BE高1.8米,斜坡BG与平台AB所成的∠ABG=150°.请你帮小明求出大树CD的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三个等腰直角三角形Rt△ABE,Rt△BCF,Rt△CDG如图摆放在射线AD上,直角顶点分别为B,C,D,已知相似比为2:3:4,AB=4,则(1)CG的长为_____;(2)图中阴影部分的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x>0)与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC交反比例函数的图象于点C,在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则平行四边形ABCD的面积为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.
(1)求年销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com