精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.

(1)求证:D是BC的中点;

(2)求证:△BEC∽△ADC;

(3)若CE=5,BD=6.5,求AB的长.

【答案】1)证明见解析; 2)证明见解析; 310

【解析】

试题(1)根据圆周角定理的推论得到∠BDA=90°,再根据等腰三角形的性质即可得到BD=CD

2)根据有两对角相等的两个三角形相似证明即可;

3)由(2)中的三角形相似可得到关于AC的比例式,AC可求,进而求出AB的长.

试题解析:(1∵AB⊙O的直径,∴∠BDA=90°.∴AD⊥BC

∵AB=AC∴BD=CD.∴DBC的中点.

2∵AB=AC∴∠C=∠ABD.

∵AB⊙O的直径,∴∠ADB=∠BEC=90°.

∴△BEC∽△ADC.

3∵△BEC∽△ADC∴CEBD=BCAC.

∵CE=5BD=6.5∴BC=2BD=13.

∴56.5=13AC∴AC=10.

∴AB=AC=10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.

评估成绩n(分

评定等级

频数

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根据以上信息解答下列问题:

(1求m的值;

(2在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示

(3从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数(k≠0)的图象经过圆心P,则k=________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:

①abc>0;

②a+b>0;

③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2

④a(m﹣1)+b=0;

⑤若c≤﹣1,则b2﹣4ac≤4a.

其中结论错误的是 .(只填写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围ABBC两边),设AB=xm.

1)若花园的面积为192m2, x的值;

2)若在P处有一棵树与墙CDAD的距离分别是15m6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,分别是边的中点,于点,则

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线相交于点O,DECA,AEBD.

(1)求证:四边形AODE是菱形;

(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE的形状是什么?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(AB的左侧),y轴交于点C,顶点为D.

(1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;

(2)说出抛物线y=x2-2x-3可由抛物线y=x2如何平移得到?

(3)求四边形OCDB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca≠0)的图象如图,则下列四个结论:abc>0;②b2﹣4ac>0;③a+b+c<0;④b>2a.其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案