分析 根据三角形的中位线得出DE∥BC,DE=$\frac{1}{2}$BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.
解答 解:∵BE和CD是△ABC的中线,
∴DE=$\frac{1}{2}$BC,DE∥BC,
∴$\frac{DE}{BC}$=$\frac{1}{2}$,△DOE∽△COB,
∴$\frac{{S}_{△DOE}}{{S}_{△COB}}$=($\frac{DE}{BC}$)2=($\frac{1}{2}$)2=$\frac{1}{4}$,
故答案为:$\frac{1}{4}$.
点评 本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{4}{9}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| 最高气温(℃) | 10 | 20 | 25 | 30 |
| 天数 | 1 | 3 | 2 | 4 |
| A. | 中位数30 | B. | 众数20 | C. | 方差39 | D. | 平均数21.25 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com