精英家教网 > 初中数学 > 题目详情
11.如图,已知△ABC,外心为O,BC=6,∠BAC=60°,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD交于点P,则OP的最小值是3-$\sqrt{3}$.

分析 由△ABD与△ACE是等腰直角三角形,得到∠BAD=∠CAE=90°,∠DAC=∠BAE,根据全等三角形的性质得到∠ADC=∠ABE,求得在以BC为直径的圆上,由△ABC的外心为O,∠BAC=60°,得到∠BOC=120°,如图,当PO⊥BC时,OP的值最小,解直角三角形即可得到结论.

解答 解:∵△ABD与△ACE是等腰直角三角形,
∴∠BAD=∠CAE=90°,
∴∠DAC=∠BAE,
在△DAC与△BAE中,
$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠BAE}\\{AC=AE}\end{array}\right.$,
∴△DAC≌△BAE,
∴∠ADC=∠ABE,
∴∠PDB+∠PBD=90°,
∴∠DPB=90°,
∴P在以BC为直径的圆上,
∵△ABC的外心为O,∠BAC=60°,
∴∠BOC=120°,
如图,当PO⊥BC时,OP的值最小,
∵BC=6,
∴BH=CH=3,
∴OH=$\sqrt{3}$,PH=3,
∴OP=3-$\sqrt{3}$.
故答案为:3-$\sqrt{3}$.

点评 本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.已知b>a>0,$\frac{1}{a}$+$\frac{1}{b}$=$\frac{7}{a+b}$.
(1)求$\frac{b}{a}$+$\frac{a}{b}$的值;
(2)求$\frac{b}{a}$-$\frac{a}{b}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知菱形ABCD边长为5cm,tan∠DAB=$\frac{4}{3}$,连接AC、BD,过点B作BE⊥AB分别交AC、CD于E、F.若点P为AD上一点,且∠DPE+∠DAB=90°,则AP长为$\frac{5}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.先化简,再求值:(2x-y)2-3(2x-y)+4(2x-y)2-(2x-y),其中2x-y=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在平面直角坐标系中,点A的坐标是(4,3),动圆D经过A、O,分别与两坐标轴的正半轴交于点E、F.当EF⊥OA时,此时EF=$\frac{125}{24}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的“三阶等腰线”.
例如:如图①,线段BD、CE把一个顶角为36°的等腰△ABC分成了3个等腰三角形,则线段BD、CE就是等腰△ABC的“三阶等腰线”.

(1)图②是一个顶角为45°的等腰三角形,在图中画出“三阶等腰线”,并标出每个等腰三角形顶角的度数;
(2)如图③,在BC边上取一点D,令AD=CD可以分割出第一个等腰△ACD,接着仅需要考虑如何将△ABD分成2个等腰三角形,即可画出所需要的“三阶等腰线”,类比该方法,在图④中画出△ABC的“三阶等腰线”,并标出每个等腰三角形顶角的度数;
(3)在△ABC中,BC=a,AC=b,∠C=2∠B.
①作出△ABC;(尺规作图,不写作法,保留作图痕迹)
②画出△ABC的“三阶等腰线”,并做适当的标注.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)自主阅读:如图1,AD∥BC,连接AB、AC、BD、CD,则S△ABC=S△BCD
证明:分别过点A和D,作AF⊥BC,DE⊥BC,由AD∥BC,可得AF=DE.
又因为S△ABC=$\frac{1}{2}×BC×AF$,S△BCD=$\frac{1}{2}×BC×DE$
所以S△ABC=S△BCD
由此我们可以得到以下的结论:像图1这样,同底等高的三角形面积相等.
(2)结论应用:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段).如三角形的一条中线就是三角形的一条面积等分线段;平行四边形的一条对角线就是平行四边形的一条面积等分线段.
小明通过研究,发现过四边形的某一顶点的直线可以将该四边形平分为面积相等的两部分.
他画出了如下示意图(如图2),得到了符合要求的直线AF.
小明的作图步骤如下:
第一步:连结AC;
第二步:过点B作BE∥AC交DC的延长线于点E;
第三步:取ED中点F,作直线AF;
则直线AF即为所求.
请你帮小明写出该作法的验证过程:
(3)类比发现:请参考小明思考问题的方法,解决问题:
如图3,五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2).请你构造一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,并求出该直线对应的函数表达式.
(4)提出问题:
结合下面所给的情景,请自主创设一个问题并给以解释:
如图4,C是线段AB上任意一点,分别以AC、BC为边在线段AB同侧构造等边三角形△ACD和等边三角形△CBE,若△CBE的面积是1cm2
【问题】求△EBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,有甲乙两个圆柱形水槽,其中乙水槽内装有一定量的水,甲水槽内没有装水,且甲水槽中放有两个完全相同且底面为正方形的长方形铁块.现将乙水槽内的水匀速注入甲水槽中,两个水槽内的水深y(cm)与注水时间x(s)的函数关系如图2所示,根据图象解答下列问题:

(1)线段DE表示乙水槽内的水深与注水之间的函数关系(填“甲”或“乙”).
(2)由A点的坐标可知长方体铁块的底面边长为5cm,并结合B点的坐标可知长方体铁块的高为9cm,所以一个长方体的体积为225cm3
(3)若设注水速度为v cm3/s,甲水槽的底面积为S,
①求注水前乙水槽内装有水多少cm3
②求线段BC对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,△ABC中,∠C=90°,BC=7cm,AC=5,点P从B点出发,沿BC方向以2m/s的速度移动,点Q从C出发,沿CA方向以1m/s的速度移动.
(1)若P、Q同时分别从B、C出发,那么几秒后,△PCQ的面积等于4?
(2)若P、Q同时分别从B、C出发,那么几秒后,PQ的长度等于5?
(3)△PCQ的面积何时最大,最大面积是多少?

查看答案和解析>>

同步练习册答案