精英家教网 > 初中数学 > 题目详情

【题目】鄂北公司以10/千克的价格收购一批产品进行销售,为了得到日销售量y(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如表:

销售价格x(元/千克)

10

15

20

25

30

日销售量y(千克)

300

225

150

75

0

1)请你根据表中的数据确定yx之间的函数表达式;

2)鄂北公司应该如何确定这批产品的销售价格,才能使日销售利润W1元最大?

3)若鄂北公司每销售1千克这种产品需支出a元(a0)的相关费用,当20≤x≤25时,鄂北公司的日获利W2元的最大值为1215元,求a的值.

【答案】1y=﹣15x+450;(2)这批产品的销售价格定为20元,才能使日销售利润最大;(3a的值为2

【解析】

1)由表格数据变化规律可知:yx的一次函数,然后利用待定系数法求一次函数解析式即可;

2)根据“总利润=每千克利润×千克数”即可求出W1x的函数关系式,然后利用二次函数求最值即可;

3)根据“总利润=每千克利润×千克数”即可求出W2x的函数关系式,然后根据对称轴的位置分类讨论,分别求出最值,然后列出方程即可求出结论.

解:(1)由表格可知: x每增加5y都下降75

yx的一次函数

yx之间的函数表达式为ykx+b

解得:k=﹣15b450

yx之间的函数表达式为:y=﹣15x+450

2)设日销售利润W1yx10)=(﹣15x+450)(x10

W1=﹣15x2+600x4500

∴当x=﹣20时,W1有最大值1500元,

答:这批产品的销售价格定为20元,才能使日销售利润最大;

3)日获利W2yx10a)=(﹣15x+450)(x10a),

W2=﹣15x2+600+15ax﹣(450a+4500),

则对称轴为x20+a

①若20+a 25,即a≥10时,则当x25时,W2有最大值,

W2112575a1215(不合题意);

②若2020+a 25,即0a10时,则当x20+a时,W2有最大值,

x20+a代入,可得W2a2150a+1500

W21215时,a2150a+15001215,解得a12a238(舍去),

综上所述,a的值为2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由AB两种彩页构成.已知A种彩页制版费300/张,B种彩页制版费200/张,共计2400元.(注:彩页制版费与印数无关)

1)每本宣传册AB两种彩页各有多少张?

2)据了解,A种彩页印刷费2.5/张,B种彩页印刷费1.5/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系中,直线 y1=x+3与抛物线y2=﹣+2x 的图象如图,点P是 y2 上的一个动点,则点P到直线 y1 的最短距离为()

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点,线段轴平行,且,抛物线常数)经过点

1)求的解析式及其对称轴和顶点坐标

2)判断点是否在上,并说明理由;

3)若线段以每秒2个单位的速度向下平移,设平移的时间为

①若与线段总有公共点,直接写出的取值范围

②若同时以每秒3个单位的速度向下平移,轴及其右侧图像与直线总有两个公共点,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,∠ABC=56°,点EF分别在BDAD上,当AE+EF的值最小时,则∠AEF=___度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点CB分别在轴、轴上,ABC是等腰直角三角形,∠BAC90°,已知A22)、P10).MBC的中点,则PM的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠ACB=90°AC=BC,点P在边AB上,点DQ分别为边BC上的点,线段AD的延长线与线段PQ的延长线交于点F,连接CPAF于点E,若∠BPF=APCFD=FQ

1)如图1,求证:AFCP

2)如图2,作∠AFP的平分线FMAB于点M,交BC于点N,若FN=MN,求证:

3)在(2)的条件下,连接DMMQ,分别交PC于点GH,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小明家住在30米高的A楼里,小丽家住在B楼里,B楼坐落在A楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°

1)如果AB两楼相距16米,那么A楼落在B楼上的影子有多长?

2)如果A楼的影子刚好不落在B楼上,那么两楼的距离应是多少米?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线a≠0)与x轴交于点A(﹣1,0)和点B(4,0).

(1)求抛物线的函数解析式;

(2)如图,将抛物线沿x轴翻折得到抛物线,抛物线y轴交于点C,点D是线段BC上的一个动点,过点DDEy轴交抛物线于点E,求线段DE的长度的最大值;

(3)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线上一动点,P与直线BC相切,且SPSDFH=2π,求满足条件的所有点P的坐标.

查看答案和解析>>

同步练习册答案