【题目】如图所示,小明家住在30米高的A楼里,小丽家住在B楼里,B楼坐落在A楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°.
(1)如果A、B两楼相距16米,那么A楼落在B楼上的影子有多长?
(2)如果A楼的影子刚好不落在B楼上,那么两楼的距离应是多少米?(结果保留根号)
【答案】(1)A楼落在B楼上的影子有14m.(2)如果A楼的影子刚好不落在B楼上,那么两楼的距离应是30米.
【解析】
(1)利用锐角三角函数关系得出CE的长,进而得出答案;
(2)可根据A楼,地面和光线正好构成直角三角形,利用锐角三角函数关系求解.
解:(1)如图,过D作DE⊥CG于E, ED=16,∠CDE=30°,
∴CE=DEtan30°=16×=16(m),
故DF=EG=CG-CE=30-16=14(m),
答:A楼落在B楼上的影子有14m.
(2)延长CD交GF于点H,
当A楼的影子刚好不落在B楼上,
则GH===30(m),
答:如果A楼的影子刚好不落在B楼上,那么两楼的距离应是30米.
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=50°,则∠BDE= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】鄂北公司以10元/千克的价格收购一批产品进行销售,为了得到日销售量y(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如表:
销售价格x(元/千克) | 10 | 15 | 20 | 25 | 30 |
日销售量y(千克) | 300 | 225 | 150 | 75 | 0 |
(1)请你根据表中的数据确定y与x之间的函数表达式;
(2)鄂北公司应该如何确定这批产品的销售价格,才能使日销售利润W1元最大?
(3)若鄂北公司每销售1千克这种产品需支出a元(a>0)的相关费用,当20≤x≤25时,鄂北公司的日获利W2元的最大值为1215元,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子中装有2个红球,1个白球和1个蓝球,这些球除颜色外都相同,小明和小凡准备用这些球做游戏,游戏规则如下:从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,若两次摸到的球的颜色都是红色,小明胜;若两次摸到的球的颜色能配成紫色,则小凡胜,这个游戏对双方公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=3cm,BC=4cm,点E是BC上一点,且CE=1cm.点P由点C出发,沿CD方向向点D匀速运动,速度为1cm/s;点Q由点A出发,沿AD方向向点D匀速运动,速度为cm/s,点P,Q同时出发,PQ交BD于F,连接PE,QB,设运动时间为t(s)(0<t<3).
(1)当t为何值时,PE∥BD?
(2)设△FQD的面积为y(cm2),求y与t之间的函数关系式.
(3)是否存在某一时刻t,使得四边形BQPE的周长最小.若存在,求出此四边形BQPE的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如(图1),已知经过原点的抛物线y=ax2+bx与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)
(1)求抛物线的解析式;
(2)在直线OB下方的抛物线上有一点C,点C到直线OB的距离为,求点C的坐标;
(3)如(图2),若点M在抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知在平面直角坐标系中,点、、分别为坐标轴上的三个点,且,,.
(1)求经过、、三点的抛物线的解析式;
(2)点是抛物线上一个动点,且在直线的上方,连接、,并把沿翻折,得到四边形,那么是否存在点,使四边形为菱形?若存在,请求出此时点的坐标;若不存在,请说明理由;
(3)如图2,过抛物线顶点作直线轴,交轴于点,点是抛物线上、两点间的一个动点(点不与、两点重合),直线、与直线分别交于点、,当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知的半径为 4,是圆的直径,点是的切线上的一个动点,连接交于点,弦平行于,连接.
(1)试判断直线与的位置关系,并说明理由;
(2)当__________时,四边形为菱形;
(3)当___________时,四边形为正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB为⊙O的直径,过点A作AD平分∠BAC交⊙O于点D,过点D作BC的平行线分别交AC、AB的延长线于点E、F,DG⊥AB于点G,连接BD.
(1)求证:△AED∽△DGB;
(2)求证:EF是⊙O的切线;
(3)若,OA=4,求劣弧的长度(结果保留π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com