【题目】如图1,已知在平面直角坐标系中,点、、分别为坐标轴上的三个点,且,,.
(1)求经过、、三点的抛物线的解析式;
(2)点是抛物线上一个动点,且在直线的上方,连接、,并把沿翻折,得到四边形,那么是否存在点,使四边形为菱形?若存在,请求出此时点的坐标;若不存在,请说明理由;
(3)如图2,过抛物线顶点作直线轴,交轴于点,点是抛物线上、两点间的一个动点(点不与、两点重合),直线、与直线分别交于点、,当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
【答案】(1);(2)存在, 点的坐标为;(3)(或是定值).
【解析】
(1)先求出点A、B、C的坐标,再用待定系数法求出抛物线的解析式即可;
(2)先设点坐标为,取中点,作,则点为所求,由此可以得到点M到y轴的距离是OB的一半,进而列出方程求解即可;
(3)过点作轴交轴与,设,由,可得以及,进而得到以及,最后用含有t的代数式分别表示出EF和EG的长,化简即可.
(1)设抛物线的解析式为,
,,、、,
方程组
解得:,,,
经过、、三点的抛物线的解析式为;
(2)存在点,使四边形为菱形.
理由为:设点坐标为,
若使四边形是菱形,则需要满足与互相垂直且平分,
取中点,作,则点为所求,,,
,
解得(不合题意,舍去),
点的坐标为;
(3)(或是定值),
理由如下:过点作轴交轴与,如图:
设,则,,
∵点D为顶点,
∴DE为对称轴,
∴CE=AE=2,
,
∴,
∴,
;
又,
∴,
,
,
科目:初中数学 来源: 题型:
【题目】已知,平面直角坐标系中,直线 y1=x+3与抛物线y2=﹣+2x 的图象如图,点P是 y2 上的一个动点,则点P到直线 y1 的最短距离为()
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=BC,点P在边AB上,点D、Q分别为边BC上的点,线段AD的延长线与线段PQ的延长线交于点F,连接CP交AF于点E,若∠BPF=∠APC,FD=FQ.
(1)如图1,求证:AF⊥CP;
(2)如图2,作∠AFP的平分线FM交AB于点M,交BC于点N,若FN=MN,求证:;
(3)在(2)的条件下,连接DM、MQ,分别交PC于点G、H,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,小明家住在30米高的A楼里,小丽家住在B楼里,B楼坐落在A楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°.
(1)如果A、B两楼相距16米,那么A楼落在B楼上的影子有多长?
(2)如果A楼的影子刚好不落在B楼上,那么两楼的距离应是多少米?(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,航拍无人机从A处测得一幢建筑物顶部B处的仰角为45°、底部C处的俯角为65°,此时航拍无人机A处与该建筑物的水平距离AD为80米.求该建筑物的高度BC(精确到1米).(参考数据:sin65°=0.91,cos65°=0.42,tan65°=2.14)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点,与轴交于点,点与点关于轴对称,点的坐标为,过点作轴的垂线交抛物线于点.
(1)求点、点、点的坐标;
(2)当点在线段上运动时,直线交于点,试探究当为何值时,四边形是平行四边形;
(3)在点的运动过程中,是否存在点,使是以为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,经过原点O的抛物线(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).
(1)求抛物线的函数解析式;
(2)如图①,将抛物线沿x轴翻折得到抛物线,抛物线与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线于点E,求线段DE的长度的最大值;
(3)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线上一动点,⊙P与直线BC相切,且S⊙P:S△DFH=2π,求满足条件的所有点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:其中正确的个数是( )
①a<0;
②b<0;
③c<0;
④;
⑤a+b+c<0.
A.1 个B.2 个C.3 个D.4 个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com