精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD中,∠ABC=56°,点EF分别在BDAD上,当AE+EF的值最小时,则∠AEF=___度.

【答案】56

【解析】

连接AC,过点CCFAD,交BD于点E,交AD于点F,连接AE,根据菱形的性质和垂线段最短可得此时AEEF的值最小,且最小值即为CF的长,然后根据等腰三角形的性质、直角三角形的性质和三角形外角的性质即可求出结论.

解:连接AC,过点CCFAD,交BD于点E,交AD于点F,连接AE

∵四边形ABCD为菱形,∠ABC=56°

∴菱形ABCD是以BD所在直线为对称轴的轴对称图形,∠ADC=ABC=56°,DA=DC

AE=CE,∠DAC=DCA=180°-∠ADC=62°

∴此时AEEF=CEEF=CF,∠EAC=ECA

根据垂线段最短可知:此时AEEF的值最小,且最小值即为CF的长

CFAD

∴∠AFC=90°

∴∠ECA=90°-∠DAC=28°

∴∠EAC=28°

∴∠AEF=EAC+∠ECA=56°

故答案为:56

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4BCECD边上一点,将BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tanBAF,则CE_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙OAB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.

(1)求证:DFAC;

(2)求tanE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,点绕点顺时针旋转后的对应点落在射线上,点绕点顺时针旋转后的对应点落在射线上,点绕点顺时针旋转后的对应点落在射线.连接,依此做法,则=________=________(用含的代数式表示,为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鄂北公司以10/千克的价格收购一批产品进行销售,为了得到日销售量y(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如表:

销售价格x(元/千克)

10

15

20

25

30

日销售量y(千克)

300

225

150

75

0

1)请你根据表中的数据确定yx之间的函数表达式;

2)鄂北公司应该如何确定这批产品的销售价格,才能使日销售利润W1元最大?

3)若鄂北公司每销售1千克这种产品需支出a元(a0)的相关费用,当20≤x≤25时,鄂北公司的日获利W2元的最大值为1215元,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】外线投资是篮球队常规训练的重要项目之一,下列图表中数据是甲乙丙三从每从十次投篮测试的成绩,测试规则为连续投篮十个球为一次,投进篮筐一个球记为1分.

1)写出运动员乙测试成绩的众数和中位数;

2)在他们三从中选择一位投篮成绩优秀且较为稳定的选手作为中锋,你认为选谁更合适?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线ACBD相交于点OAB3cmBC4cm,点EBC上一点,且CE1cm.点P由点C出发,沿CD方向向点D匀速运动,速度为1cm/s;点Q由点A出发,沿AD方向向点D匀速运动,速度为cm/s,点PQ同时出发,PQBDF,连接PEQB,设运动时间为t(s)(0t3)

(1)t为何值时,PEBD

(2)设△FQD的面积为y(cm2),求yt之间的函数关系式.

(3)是否存在某一时刻t,使得四边形BQPE的周长最小.若存在,求出此四边形BQPE的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).

(1)求km的值;

(2)已知点P(nn)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.

①当n=1时,判断线段PM与PN的数量关系,并说明理由;

②若PN≥PM,结合函数的图象,直接写出n的取值范围.

查看答案和解析>>

同步练习册答案