精英家教网 > 初中数学 > 题目详情

【题目】函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有个.

【答案】2
【解析】解:∵函数y=x2+bx+c与x轴无交点, ∴b2﹣4ac<0;
故①错误;
当x=1时,y=1+b+c=1,
故②错误;
∵当x=3时,y=9+3b+c=3,
∴3b+c+6=0;
③正确;
∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,
∴x2+(b﹣1)x+c<0.
故④正确.
故答案是:2.
【考点精析】本题主要考查了二次函数图象以及系数a、b、c的关系的相关知识点,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形纸片ABCD中,∠A=70°,∠B=80°,将纸片折叠,使C,D落在AB边上的C′,D′处,折痕为MN,则∠AMD′+∠BNC′=(
A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算题:|﹣3|+ tan30°﹣ ﹣(2017﹣π)0+( 1
(2)计算题:(x﹣2﹣ )÷
(3)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知正方形OABC,A(4,0),C(0,4),动点P从点A出发,沿ABCO的路线匀速运动,设动点P的运动路程为t,OAP的面积为S,则下列能大致反映St之间关系的图象是(  )

A. (A) B. (B) C. (C) D. (D)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过A(﹣2,0)B(﹣3,3)及原点O,顶点为C.

(1)求抛物线的解析式;
(2)若点E在抛物线的对称轴上,且A、O、D、E为顶点是四边形是平行四边形,求点D的坐标.
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料.

我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?

在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第nn个圆圈中数的和为n+n+n+…+n,即n2.这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2

(规律探究)

将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为   ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=   ,因此,12+22+32+…+n2=   

(解决问题)

根据以上发现,计算:的结果为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,都是由边长为 1 的正方体叠成的立体图形例如第个图形由 1 个正方体叠成,第个图形由 4 个正方体叠成个图形由 10 个正方体叠成依次规律个图形由( )个正方形叠成.

A. 86 B. 87 C. 85 D. 84

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AOB和一条定长线段a,AOB内找一点P,使点POA,OB的距离都等于a,作法如下:

①在AOB内作OB的垂线段NH,使NH=a,H为垂足;②过NNMOB;③作AOB的平分线OP,NM交于点P;④点P即为所求.其中③的依据是(  )

A. 平行线之间的距离处处相等 B. 角的内部到角的两边的距离相等的点在角的平分线上

C. 角的平分线上的点到角的两边的距离相等 D. 线段垂直平分线上的点到线段两端点的距离相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,把一条长为2016个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是  

A. B. C. D.

查看答案和解析>>

同步练习册答案