【题目】如图,在平行四边形ABCD中,E、F分别在BA、DC延长线上,且AE=CF,连接EF分别交AD、BC于G、H,求证:AC与GH互相平分.
【答案】见解析
【解析】
先根据平行四边形的判定求出四边形AFCE是平行四边形,根据平行四边形的性质求出OE=OF,OA=OC,根据平行四边形的性质可得出∠E=∠F,∠EGA=∠FHC,利用AAS即可证明△EAG≌△FHC,继而可得出结论.
解:证明:如图,连接AF和CE,
∵四边形ABCD是平行四边形,
∴AB∥CD,
即AE∥CF,
∵AE=CF,
∴四边形AFCE是平行四边形,
∴OE=OF,OA=OC,
∵E、F分别是平行四边形ABCD的边BA、DC延长线上的点,
∴BE∥DF,
∴∠E=∠F,
又∵平行四边形中AD∥BC,
∴∠EGA=∠EHB,
又∵∠EHB=∠FHC,
∴∠EGA=∠FHC,
在△EAG与△FHC中,
,
∴△EAG≌△FHC(AAS),
∴GE=FH,
∵OE=OF,
∴OG=OH,
∵OA=OC,
即AC与GH互相平分.
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.
(1)求证:△ABD∽△DCE;
(2)如果AB=3,EC=,求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,过点D作DE⊥AD交AB于点E,以AE为直径作⊙O.
(1)求证:直线BC是⊙O的切线;
(2)若∠ABC=30°,⊙O的直径为4,求阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC为⊙O的直径,MN为⊙O的切线,点D为切点,连结AD.直线MN与直线AC交于点B,过点A作AE⊥MN,垂足为E.
(1)求证:AD平分∠EAB.
(2)求证:AD2=AGAB.
(3)若AE=6,BE=8,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB.
(1)求证:EF⊥AG;
(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?
(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当,求△PAB周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+3x﹣
(1)用配方法求出函数图象的顶点坐标和对称轴方程;
(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;
(3)根据图象,直接写出y的值小于0时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com