【题目】如图,抛物线(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线与直线有且只有一个交点;②若点、点、点在该函数图象上,则;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为;④点A关于直线的对称点为C,点D、E分别在x轴和y轴上,当时,四边形BCDE周长的最小值为.其中正确判断的序号是__
【答案】①③④
【解析】
①把代入中,判断所得一元二次方程的根的情况便可得判断正确;
②根据二次函数的性质进行判断;
③根据平移的公式求出平移后的解析式便可;
④因BC边一定,只要其他三边和最小便可,作点B关于y轴的对称点,作C点关于x轴的对称点,连接,与x轴、y轴分别交于D、E点,求出便是其他三边和的最小值.
解:①把代入中,得,,∴此方程两个相等的实数根,则抛物线与直线有且只有一个交点,故此小题结论正确;
②∵抛物线的对称轴为,∴点关于的对称点为,,∴当时,y随x增大而减小,又,点、点、点在该函数图象上,,故此小题结论错误;
③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:,即,故此小题结论正确;
④当时,抛物线的解析式为:,,作点B关于y轴的对称点,作C点关于x轴的对称点,连接,与x轴、y轴分别交于D、E点,如图,
则,根据两点之间线段最短,知最短,而BC的长度一定,∴此时,四边形BCDE周长最小,为:,故此小题结论正确;
故答案为:①③④.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是二次函数图象的一部分,图象过点,二次函数图象对称轴为直线,给出五个结论:①;②;③当时,随的增大而增大;④方程的根为,;⑤其中正确结论是( )
A. ①②③ B. ①③④ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.
(1)求证:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=(x-2)2与x轴交于点A,与y轴交于点B,过点B作BC∥x轴,交抛物线于点C,过点A作AD∥y轴,交BC于点D,点P在BC下方的抛物线上(不与点B,C重合),连接PC,PD,设△PCD的面积为S,则S的最大值是________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两块斜边长相等的等腰直角三角板按如图①摆放,斜边AB分别交CD,CE于M,N点.
(1)如果把图①中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图②,求证:△CMF≌△CMN;
(2)将△CED绕点C旋转,则:
①当点M,N在AB上(不与点A,B重合)时,线段AM,MN,NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;
②当点M在AB上,点N在AB的延长线上(如图③)时,①中的关系式是否仍然成立?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.
(1)根据图象,直接写出满足的的取值范围;
(2)求这两个函数的表达式;
(3)点在线段上,且,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的是( )
A.①③B.①②③④C.①②③D.①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com