精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,AB2,∠BAD60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点EAC上,EFCD交于点P,则DP的长是________.

【答案】-1

【解析】

连接ADACO,由菱形的性质得出CDAB2,∠BCD=∠BAD60°,∠ACD=∠BACBAD30°,OAOCACBD,由直角三角形性质求出OBAB1OAOB,得出AC2,由旋转的性质可得AEAB2,∠EAG=∠BAD60°,得出CEACAE22,证出∠CPE90°,由直角三角形的性质得出PECE1PCPE3,即可得出结果.

如图所示,连接BDACO

∵四边形ABCD是菱形,

CDAB2,∠BCD=∠BAD60°,∠ACD=∠BACBAD30°,OAOCACBD

OBAB1

OAOB

AC2

由旋转的性质得:AEAB2,∠EAG=∠BAD60°,

CEACAE22

∵四边形AEFG是菱形,

EFAG

∴∠CEP=∠EAG60°,

∴∠CEP+∠ACD90°,

∴∠CPE90°,

PECE1PCPE3

DPCDPC2﹣(3)=1.

故答案为:1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=-x(x-3)(0x3),记为C1,它与x轴交于两点OA1;将C1A1旋转180°得到C2,交x轴于A2;将C2A2旋转180°得到C3,交x轴于A3,过抛物线C1C3顶点的直线与C1C2C3围成的如图中的阴影部分,那么该面积为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在RtABC中,∠ACB=90°AC=6cmBC=8cm,点PA出发沿ACC点以1厘米/秒的速度匀速移动;点QC出发沿CBB点以2厘米/秒的 速度匀速移动.点PQ分别从起点同时出发,移动到某一位置时所需时间为t秒.

1)当t= 时,PQAB

2)当t为何值时,PCQ的面积等于5cm2

3)在PQ运动过程中,在某一时刻,若将PQC翻折,得到EPQ,如图2PEAB能否垂直?若能,求出相应的t值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点Bx轴的正半轴上.∠OAB=90°且OA=ABOBOC的长分别是一元二次方程的两个根(OBOC).

1)求点A和点B的坐标.

2)点P是线段OB上的一个动点(点P不与点OB重合),过点P的直线ly轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0t3时,求m关于t的函数关系式.

3)当m=3.5时,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2-4x-3,下列说法中正确的是(

A.该函数图象的开口向下B.该函数图象的顶点坐标是(-2,-7)

C.x<0时,yx的增大而增大D.该函数图象与x轴有两个不同的交点,且分布在坐标原点两侧

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2bxc开口向上,与x轴交于点AB,与y轴交于点C

(1) 如图1,若A (10)、C (03)且对称轴为直线x2,求抛物线的解析式

(2) 在(1)的条件下,如图2,作点C关于抛物线对称轴的对称点D,连接ADBD,在抛物线上是否存在点P,使∠PAD=∠ADB,若存在,求出点P的坐标,若不存在,请说明理由

(3) 若直线lymxn与抛物线有两个交点MNMN的左边),Q为抛物线上一点(不与MN重合),过点QQH平行于y轴交直线l于点H,求的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.

(1)求∠DCE的度数;

(2)若AB=4,CD=3AD,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点P,∠APB75°,∠BAC90°,BD4,求△ABC的外接圆的半径及∠ADB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线m为常数)交y轴于点A,与x轴的一个交点在23之间,顶点为B.①抛物线与直线有且只有一个交点;②若点、点、点在该函数图象上,则;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为;④点A关于直线的对称点为C,点DE分别在x轴和y轴上,当时,四边形BCDE周长的最小值为.其中正确判断的序号是__

查看答案和解析>>

同步练习册答案