精英家教网 > 初中数学 > 题目详情

【题目】关于x的一元二次方程有两个不相等的实数根x1x2

1)求k的取值范围;

2)如果,且k为整数,求k的值.

【答案】1k <0;(2-2,1

【解析】

1)方程有两个实数根,必须满足△=b2-4ac≥0,从而求出实数k的取值范围;
2)先由一元二次方程根与系数的关系,得x1+x2=-2x1x2=k+1.再代入不等式x1+x2-x1x24,即可求得k的取值范围,然后根据k为整数,求出k的值.

解:(1)∵方程有实数根,
∴△=-22-4k+1)>0
解得k0
k的取值范围是k0
2)根据一元二次方程根与系数的关系,得x1+x2=2x1x2=k+1
x1+x2-x1x2=2-k+1).
由已知,得2-k+1)<4,解得k-3
又由(1k0
-3k0
k为整数,
k的值为-2-1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,BD是等边ABC一边上的高,延长BCE,使CE=CD.

(1)试比较BDDE的大小关系,并说明理由;

(2)若将BD改为ABC的角平分线或中线,能否得出同样的结论?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:

(1)在这次抽样调查中,一共调查了多少名学生?

(2)请把折线统计图(图1)补充完整;

(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;

(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+1y轴于点A,交x轴正半轴于点B(4,0) ,与过A点的直线相交于另一点D(3,) ,过点DDCx轴,垂足为C

(1)求抛物线的表达式;

(2)点P在线段OC上(不与点OC重合),过PPNx轴,交直线ADM,交抛物线于点N,连接CM,求△PCM 面积的最大值;

(3)若P x 轴正半轴上的一动点,设OP 的长为t.是否存在t,使以点MCDN 为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求若干个相同的不为零的有理数的除法运算叫做除方. 如:2÷2÷2(-3)÷(-3)÷(-3 )÷( -3). 类比有理数的乘方,我们把 2÷2÷2 记作 2,读作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3),读作“-3 的圈 4 次方”.

一般地,把a≠0)记作a,记作a 的圈c次方”.

(1)直接写出计算结果:2= (-3) = = .

(2)计算 24÷23 + (-8)×2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,直线a经过点A,且BEaEDFaF

1)当直线a绕点A旋转到图1的位置时,求证:①△ABE≌△DAF;②EFBE+DF

2)当直线a绕点A旋转到图2的位置时,试探究EFBEDF具有怎样的等量关系?请写出这个等量关系,并加以证明;

3)当直线a绕点A旋转到图3的位置时,试问DFEFBE具有怎样的等量关系?请写出这个等量关系,不证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.

(1)求点A的坐标及直线的函数表达式;

(2)连接,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为A1)的抛物线经过坐标原点O,与x轴交于点B

(1)求抛物线对应的二次函数的表达式;

(2)过BOA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;

(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.

1)填空:a=  b=  

2)如果在第三象限内有一点M﹣2m),请用含m的式子表示ABM的面积;

3)在(2)条件下,当m=时,在y轴上有一点P,使得BMP的面积与ABM的面积相等,请求出点P的坐标.

查看答案和解析>>

同步练习册答案