【题目】如图,正方形ABCD中,直线a经过点A,且BE⊥a于E,DF⊥a于F.
(1)当直线a绕点A旋转到图1的位置时,求证:①△ABE≌△DAF;②EF=BE+DF;
(2)当直线a绕点A旋转到图2的位置时,试探究EF、BE、DF具有怎样的等量关系?请写出这个等量关系,并加以证明;
(3)当直线a绕点A旋转到图3的位置时,试问DF、EF、BE具有怎样的等量关系?请写出这个等量关系,不证明.
【答案】(1)①见解析;②见解析;(2)EF=DF﹣BE,理由见解析;(3)EF=BE﹣DF,理由见解析
【解析】
(1)①由正方形的性质得出AB=AD,∠BAD=90°,证出∠ABE=∠DAF,由ASA证明△ABE≌△DAF即可;
②由全等三角形的性质得出BE=AF,AE=DF,即可得出结论;
(2)由正方形的性质得出AB=AD,∠BAD=90°,证出∠ABE=∠DAF,由ASA证明△ABE≌△DAF,得出BE=AF,AE=DF,即可得出结论;
(3)由正方形的性质得出AB=AD,∠BAD=90°,证出∠ABE=∠DAF,由ASA证明△ABE≌△DAF,得出BE=AF,AE=DF,即可得出结论.
(1)证明:①∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°.
∴∠BAE+∠DAF=90°,
又∵BE⊥a,DF⊥a,
∴∠AEB=∠DFA=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE=∠DAF,
在△ABE和△DAF中,
,
∴△ABE≌△DAF(AAS).
②∵△ABE≌△DAF,
∴BE=AF,AE=DF,
∵EF=AF+AE,
∴EF=BE+DF;
(2)解:EF=DF﹣BE,理由如下:
∵四边形ABCD是正方形
∴AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,
又∵BE⊥a,DF⊥a,
∴∠AEB=∠DFA=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE=∠DAF,在△ABE和△DAF中,
,
∴△ABE≌△DAF(AAS).
∴AE=DF,BE=AF,
又∵EF=AE﹣AF,
∴EF=DF﹣BE;
(3)解:EF=BE﹣DF;理由如下:
同(2)得:△ABE≌△DAF(AAS).
∴AE=DF,BE=AF,
又∵EF=AF﹣AE,
∴EF=BE﹣DF.
科目:初中数学 来源: 题型:
【题目】已知数轴上两点、,其中A表示的数为-2,表示的数为2,若在数轴上存在一点,使得,则称点叫做点、的“节点”,例如图1所示,若点表示的数为0,有,则称点为点、的“4节点”.
请根据上述规定回答下列问题:
(1)若点为点、的“节点”,且点在数轴上表示的数为-4,求的值.
(2)若点是数轴上点、的“5节点”,请你直接写出点表示的数为____________;
(3)若点在数轴上(不与、重合),满足、之间的距离是、之间距离的一半,且此时点为点、的“节点”,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
(1)求证:AC平分∠DAB;
(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);
(3)若CD=4,AC=4,求垂线段OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,二次函数y=mx2-(2m+1)x+m-5的图象与x轴有两个公共点.
()求m的取值范围;
()若m取满足条件的最小的整数,
①写出这个二次函数的表达式;
②当n≤x≤1时,函数值y的取值范围是-6≤y≤4-n,求n的值;
③将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 +k,当x<2时,y随x的增大而减小,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行驶里程如下:(单位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他将最后一名乘客送到目的地时,距下午出车地点是多少千米?
(2)若汽车耗油量为升∕千米,这天下午共耗油多少升
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=cm,且tan∠EFC=,那么该矩形的周长为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com