精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,二次函数y=mx2-(2m+1)x+m-5的图象与x轴有两个公共点.

)求m的取值范围;

)若m取满足条件的最小的整数,

①写出这个二次函数的表达式;

②当n≤x≤1时,函数值y的取值范围是-6≤y≤4-n,求n的值;

③将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 +k,当x<2时,y随x的增大而减小,求k的取值范围.

【答案】(1)(2)①

【解析】分析:(1)因为函数为二次函数,所以有m≠0,又因为图象与轴有两个交点,所以判别式>0,联立即可解得的范围。

(2)①因为m>- m≠0,且m取满足条件的最小的整数,所以m=1,所以二次函数的解析式为

②因为二次函数的对称轴为直线x= ,所以n≤x≤1时,yx的增大而减小,当x=1时,函数值为-6,当x=n时,函数值为4-n,即可得到关于n的一元二次方程,求解即可;

③由平移后图象对应的函数表达式可得a=1,因为平移后的图象经过原点O,将点(0,0)代入平移后的函数表达式可得k=-,由x<2,yx的增大而减小得对称轴h≥2,即可确定k的取值范围。

详解:(1)

∵该二次函数图像与x轴有两个交点

(2)

函数对称轴是直线x=1.5

因为在n≤x≤1范围内,x=ny取到最大值

而当n≤x≤1时,函数值y的取值范围是-6≤y≤4-n

所以

n=-2n=4(不合题意)

③由题意得a=1,图象经过原点,可得

∵当x<2时,yx的增大而减小

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在下列生活、生产现象中,可以用基本事实两点确定一条直线来解释的是(  )

①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+1y轴于点A,交x轴正半轴于点B(4,0) ,与过A点的直线相交于另一点D(3,) ,过点DDCx轴,垂足为C

(1)求抛物线的表达式;

(2)点P在线段OC上(不与点OC重合),过PPNx轴,交直线ADM,交抛物线于点N,连接CM,求△PCM 面积的最大值;

(3)若P x 轴正半轴上的一动点,设OP 的长为t.是否存在t,使以点MCDN 为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,直线a经过点A,且BEaEDFaF

1)当直线a绕点A旋转到图1的位置时,求证:①△ABE≌△DAF;②EFBE+DF

2)当直线a绕点A旋转到图2的位置时,试探究EFBEDF具有怎样的等量关系?请写出这个等量关系,并加以证明;

3)当直线a绕点A旋转到图3的位置时,试问DFEFBE具有怎样的等量关系?请写出这个等量关系,不证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.

(1)求点A的坐标及直线的函数表达式;

(2)连接,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.

(1)该班男生和女生各有多少人?

(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为A1)的抛物线经过坐标原点O,与x轴交于点B

(1)求抛物线对应的二次函数的表达式;

(2)过BOA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;

(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.

(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;

(2)在(1)的条件下,若DE:AE:CE= 1: :3,求∠AED的度数;

(3)若BC= 4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACC′是由△ABB′经过位似变换得到的

(1)求出△ACC′△ABB′的相似比,并指出它们的位似中心;

(2)△AEE′△ABB′的位似图形吗?如果是,求相似比;如果不是说明理由;

(3)如果相似比为3,那么△ABB′的位似图形是什么?

查看答案和解析>>

同步练习册答案