精英家教网 > 初中数学 > 题目详情

【题目】如图,反比例函数y= (x>0)与一次函数y=kx+6 交于点C(2,4 ),一次函数图象与两坐标轴分别交于点A和点B,动点P从点A出发,沿AB以每秒1个单位长度的速度向点B运动;同时,动点Q从点O出发,沿OA以相同的速度向点A运动,运动时间为t秒(0<t≤6),以点P为圆心,PA为半径的⊙P与AB交于点M,与OA交于点N,连接MN、MQ.

(1)求m与k的值;
(2)当t为何值时,点Q与点N重合;
(3)若△MNQ的面积为S,试求S与t的函数关系式.

【答案】
(1)

解:将C(2,4 )代入y= 中得,m=8

将(2,3 )代入y=kx+6 中得,2k+6 =4

∴k=﹣


(2)

解:由(1)知,k=﹣

∴直线AB的解析式为y=﹣ x+6

∴A(6,0),B(0,6 ),

∴AB=12

∵AM是直径

∴∠ANM=90°,

∴∠ANM=∠AOB

又∵∠MAN=∠BAO,

∴△MAN∽△BAO,

∵OQ=AP=t,AM=2AP=2t,OA=6,OB=6 ,AB=12

∴AN=t,MN= t

∴ON=OA﹣AN=6﹣t

∵点Q与点N重合

∴ON=OQ

即6﹣t=t

∴t=3


(3)

解:①当0<t≤3时,QN=OA﹣OQ﹣AN=6﹣2t

∴S= QNMN= (6﹣2t) t=﹣ t2+3 t

②当3<t≤6时,QN=OQ+NA﹣OA=t+t﹣6=2t﹣6

∴S= QNMN= (2t﹣6) t= t2﹣3 t,

即:S=


【解析】(1)利用待定系数法直接求出m和k;(2)先求出AB,进而判断出△MAN∽△BAO,利用比例式得出AN和MN,即可得出ON,利用ON=OQ建立方程求解即可;(3)分两种情况利用三角形的面积公式即可得出结论.
【考点精析】掌握确定一次函数的表达式和相似三角形的判定是解答本题的根本,需要知道确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2个,3个,4个,5个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:

若按此规律继续作长方形,则序号为⑧的长方形周长是( )

A. 288 B. 178 C. 28 D. 110

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④SABG= SFGH . 其中正确的是(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列各题:
(1)如图,已知直线AB与⊙O相切于点C,且AC=BC,求证:OA=OB.
(2)如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在如图所示的网格中建立平面直角坐标系后,ABC三个顶点的坐标分别为A(1,1),B(4,2),C(2,4).

(1)画出ABC关于y轴对称的△A1B1C1

(2)①借助图中的网格,请只用直尺(不含刻度)在图中找一点P,使得P到AB、AC的距离相等,且PA=PB.

②若x轴上有一动点Q,使得QAB的周长最小,则△QAB的最小周长为

(友情提醒:请别忘了标注宇母)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理过程,请填空.

解:∵OA⊥OB(已知)

所以_____=90°________

因为_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代换)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型

汽车运载量(吨/辆)

5

8

10

汽车运费(元/辆)

400

500

600

(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?

(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?

查看答案和解析>>

同步练习册答案