精英家教网 > 初中数学 > 题目详情

【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

【答案】
(1)证明:∵O是AC的中点,且EF⊥AC,

∴AF=CF,AE=CE,OA=OC,

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠AFO=∠CEO,

在△AOF和△COE中,

∴△AOF≌△COE(AAS),

∴AF=CE,

∴AF=CF=CE=AE,

∴四边形AECF是菱形


(2)解:∵四边形ABCD是矩形,

∴CD=AB=

在Rt△CDF中,cos∠DCF= ,∠DCF=30°,

∴CF= =2,

∵四边形AECF是菱形,

∴CE=CF=2,

∴四边形AECF是的面积为:ECAB=2


【解析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.
【考点精析】关于本题考查的菱形的判定方法和矩形的性质,需要了解任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;矩形的四个角都是直角,矩形的对角线相等才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= (x>0)与一次函数y=kx+6 交于点C(2,4 ),一次函数图象与两坐标轴分别交于点A和点B,动点P从点A出发,沿AB以每秒1个单位长度的速度向点B运动;同时,动点Q从点O出发,沿OA以相同的速度向点A运动,运动时间为t秒(0<t≤6),以点P为圆心,PA为半径的⊙P与AB交于点M,与OA交于点N,连接MN、MQ.

(1)求m与k的值;
(2)当t为何值时,点Q与点N重合;
(3)若△MNQ的面积为S,试求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为( ,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:

(1)=________.

(2)=5,则x=____.

(3)同理表示数轴上有理数x所对应的点到-12所对应的两点距离之和,请你找出所有符合条件的整数x,使得=3,这样的整数是________(直接写答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC外分别以AB,AC为边作两个大小不同的等腰直角三角形ABD和等腰直角三角形ACE,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.连结DCBE交于F点.

(1)请你找出一对全等的三角形,并加以证明;

(2)直线DC、BE是否互相垂直,请说明理由;

(3)求证:∠DFA=∠EFA.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,,AB的垂直平分线交ABD,交AC于点E,连接BE,EBC=45°,DE=3,BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是正ABC内一点,OA=3OB=4OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①BO′A可以由BOC绕点B逆时针旋转60°得到;②点OO′的距离为4③∠AOB=150°S四边形AOBO′=6+3SAOC+SAOB=6+.其中正确的结论是

A. ①②③⑤ B. ①③④ C. ②③④⑤ D. ①②⑤

查看答案和解析>>

同步练习册答案