精英家教网 > 初中数学 > 题目详情

【题目】南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?
(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)

【答案】解:过B作BD⊥AC,

∵∠BAC=75°﹣30°=45°,

∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,

由勾股定理得:BD=AD= ×20=10 (海里),

在Rt△BCD中,∠C=15°,∠CBD=75°,

∴tan∠CBD= ,即CD=10 ×3.732=52.77048,

则AC=AD+DC=10 +10 ×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.


【解析】过B作BD⊥AC,根据题意得出在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得出BD=AD=10 ,在Rt△BCD中,根据tan∠CBD的定义求出CD,进而得出AC.
【考点精析】根据题目的已知条件,利用关于方向角问题的相关知识可以得到问题的答案,需要掌握指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在RtABC中,ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:EDBC;②∠A=EBA;EB平分AED;ED=AB中,一定正确的是( )

A.①②③ B.①②④ C.①③④ D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量出楼房AC的高度,从距离楼底C处60 米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1: 的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°= ,cos = ,tan53°= ≈1.732,结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12OC边长为3.

(1)数轴上点A表示的数为________

(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.

①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?

  ②设点A的移动距离AA′x.

  ()S4时,求x的值;

  )D为线段AA′的中点,点E在线段OO′上,且OEOO′,当点DE所表示的数互为相反数时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式计算正确的是( )
A.= ab4
B.(﹣1+b)(﹣b﹣1)=1﹣b2
C.5xy2﹣xy2=4
D.(a﹣b)2=a2+b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=2,∠B=C.求证:(1ABCD;(2) AEC=3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,AC=BC=6,以A为旋转中心将△ABC顺时针旋转30°得到△ADE,则图中阴影部分的面积=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题|1﹣ |﹣ +2cos30°﹣20170
(1)计算:|1﹣ |﹣ +2cos30°﹣20170
(2)解不等式组 并求其最小整数解.

查看答案和解析>>

同步练习册答案