【题目】如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A的仰角为300 ,沿坡面向下走到坡脚C处,然后在地面上沿CB向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为600 .已知坡面CD=10米,山坡的坡度(坡度 是指坡面的铅直高度与水平宽度的比),
(1)求点D离地面高度(即点D到直线BC的距离);
(2)求楼房AB高度.(结果保留根式)
【答案】(1)5米;(2)()米.
【解析】
(1)过点D作DM⊥BC,垂足为点M,由,得:DM:CM:DC=
:2,即可得到答案;
(2)过点D作DN⊥AB,垂足为N,设AB=x,则BE=,AN=x-5,DN=10+5
+
,根据tan30°=
,列出方程,即可求解.
(1)过点D作DM⊥BC,垂足为点M,
∵山坡的坡度,
∴DM:CM:DC=:2,
∵CD=10,
∴DM=5,
∴点D离地面高度是5米.
(2)过点D作DN⊥AB,垂足为N,
由(1)题可知:DM=5,CM=5,
∵CE=10,
∴ME=10+5,
设AB=x,则BE=,AN=x-5,
∴DN=MB=10+5+
,
∵tan30°=,
∴ ,解得:x=
,
∴楼房AB高度是()米.
科目:初中数学 来源: 题型:
【题目】如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.
(1)求证:AE与⊙O相切于点A;
(2)若AE∥BC,BC=8,AB=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解全校名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了五种上学方式供学生选择,每人必选一项,且只能选一项.请根据下面两个不完整的统计图回答以下问题:
(1)在这次调查中,共抽取了多少名学生;
(2)补全两个统计图;
(3)估计全校所有学生中有多少人乘坐公交车上学.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过点A(0,﹣3)、B(﹣1,0)、C(2,﹣3),抛物线与x轴的另一交点为点E,点P为抛物线上一动点,设点P的横坐标为t.
(1)求抛物线的解析式;
(2)若点P在第一象限,点M为抛物线对称轴上一点,当四边形MBEP恰好是平行四边形时,求点P的坐标;
(3)若点P在第四象限,连结PA、PE及AE,当t为何值时,△PAE的面积最大?最大面积是多少?
(4)是否存在点P,使△PAE为以AE为直角边的直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
(1)若此函数图象与轴只有一个交点,试写出
与
满足的关系式.
(2)若,点
,
,
是该函数图象上的3个点,试比较
,
,
的大小.
(3)若,当
时,函数
随
的增大而增大,求
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平行四边形ABCD中,AB=3cm, BC=5cm, ,
沿 AC的方向匀速平移得到
,速度为1 cm/ s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当
停止平移时,点Q也停止移动,如图2,设移动时间为t(s)(0< <4),连结PQ,MQ ,
解答下列问题:
(1)当t为何值时, ?
(2)当t为何值时, ?
(3)当t为何值时, ?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进一批成本为每件30元的商品,商店按单价不低于成本价,且不高于50元销售.经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y(件)与销售单价x(元)之间的函数关系式;
(2)销售单价定为多少元时,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
(3)若商店要使销售该商品每天获得的利润高于800元,请直接写出每天的销售量y(件)的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数
的图象于点M,△AOM的面积为3.
(1)求反比例函数的解析式;
(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】
A.米 B.12米 C.
米 D.10米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com