分析 (1)由D,E分别是AB,BC的中点得到BE=$\frac{1}{2}$BC,BD=$\frac{1}{2}$BA,加上△ABC为等边三角形,则∠B=60°,BA=BC,所以BD=BE,于是可判断△BDE为等边三角形;
(2)①根据旋转的性质得△BD1E1为等边三角形,则BD1=BE1,∠D1BE1=60°,而∠ABC=60°,所以∠ABD1=∠CBE1,则路旋转的定义,△ABD1可由△CBE1绕点B逆时针旋转得到,然后根据旋转的性质得CE1=AD1;
②由于△ABD1可由△CBE1绕点B逆时针旋转得到∠BAD1=∠BCE1,然后根据三角形内角和定理和得∠APC=∠ABC=60°;、
(3)由于∠APC=∠D1BE1=60°,则可判断点P、D1、B、E1共圆,于是可判断当BP⊥BC时,点P到BC所在直线的距离的最大值,此时点E1在AB上,然后利用含30度的直角三角形三边的关系可得点P到BC所在直线的距离的最大值.
解答 解:(1)∵D,E分别是AB,BC的中点,
∴BE=$\frac{1}{2}$BC,BD=$\frac{1}{2}$BA,
∵△ABC为等边三角形,
∴∠B=60°,BA=BC,![]()
∴BD=BE,
∴△BDE为等边三角形;
(2)①CE1=AD1.理由如下:
∵△BDE绕点B逆时针旋转,得到△BD1E1,
∴△BD1E1为等边三角形,
∴BD1=BE1,∠D1BE1=60°,
而∠ABC=60°,
∴∠ABD1=∠CBE1,
∴△ABD1可由△CBE1绕点B逆时针旋转得到,
∴CE1=AD1;
②∵△ABD1可由△CBE1绕点B逆时针旋转得到,
∴∠BAD1=∠BCE1,
∴∠APC=∠ABC=60°;
(3)∵∠APC=∠D1BE1=60°,
∴点P、D1、B、E1共圆,
∴当BP⊥BC时,点P到BC所在直线的距离的最大值,此时点E1在AB上,
在Rt△PBC中,PB=$\frac{\sqrt{3}}{3}$AB=$\frac{\sqrt{3}}{3}$×2$\sqrt{3}$=2,
∴点P到BC所在直线的距离的最大值为2.
故答案为2.
点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了等边三角形的性质.
科目:初中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | AD=CD | B. | AD=BC | C. | DC=2AB | D. | AB:BD=2:3 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com