【题目】在Rt△ABC中,∠ACB=90°,AC=BC,CD为AB边上的中线.在Rt△AEF中,∠AEF=90°,AE=EF,AF<AC.连接BF,M,N分别为线段AF,BF的中点,连接MN.
(1)如图1,点F在△ABC内,求证:CD=MN;
(2)如图2,点F在△ABC外,依题意补全图2,连接CN,EN,判断CN与EN的数量关系与位置关系,并加以证明;
(3)将图1中的△AEF绕点A旋转,若AC=a,AF=b(b<a),直接写出EN的最大值与最小值.
【答案】(1)证明见解析;(2)CN与EN的数量关系CN=EN,CN与EN的位置关系CN⊥EN.证明见解析;(3)EN的最大值为,最小值为.
【解析】
(1)利用直角三角形的斜边的中线等于斜边的一半和三角形的中位线解题即可;
(2)构造出△EMN≌△DNC进而利用互余即可得出结论;
(3)借助(2)的结论,先判断出点N是以点D为圆心,为半径的圆上,即可得出答案.
解:(1)证明:在Rt△ABC中,
∵CD是斜边AB上的中线.
∴.
在△ABF中,点M,N分别是边AF,BF的中点,
∴,
∴CD=MN.
(2)答:CN与EN的数量关系CN=EN,
CN与EN的位置关系CN⊥EN.
证明:连接EM,DN,如图.
与(1)同理可得 CD=MN,EM=DN.
在Rt△ABC中,CD是斜边AB边上的中线,
∴CD⊥AB.
在△ABF中,同理可证EM⊥AF.
∴∠EMF=∠CDB=90°.
∵D,M,N分别为边AB,AF,BF的中点,
∴DN∥AF,MN∥AB.
∴∠FMN=∠MND,∠BDN=∠MND.
∴∠FMN=∠BDN.
∴∠EMF+∠FMN=∠CDB+∠BCN.
∴∠EMN=∠NDC.
∴△EMN≌△DNC.
∴CN=EN,∠1=∠2.
∵∠1+∠3+∠EMN=180°,
∴∠2+∠3+∠FMN=90°.
∴∠2+∠3+∠DNM=90°,
即∠CNE=90°.
∴CN⊥EN.
(3)点N是以点D为圆心,为半径的圆上,
在Rt△ABC中,AC=BC=a,
∴,
∵CD为AB边上的中线.
∴,
∴CN最大=,CN最小=
由(2)知,EN=CN,
∴EN最大=,EN最小=
即:EN的最大值为,最小值为.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与轴交于两点(点在点左侧),与轴交于点,点抛物线的顶点.
(1)求直线的解析式;
(2)抛物线对称轴交轴于点,为直线上方的抛物线上一动点,过点作于点,当线段的长最大时,连接,过点作射线,且,点为射线上一动点(点不与点重合),连接,为中点,连接,求的最小值;
(3)如图2,平移抛物线,使抛物线的顶点在射线上移动,点,平移后的对应点分别为点,,轴上有一动点,连接,,是否能为等腰直角三角形?若能,请求出所有符合条件的点的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.
(1)若∠B=64°,求∠CAD的度数;
(2)若AB=10,DE=2,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知OA,OB的长是方程x2-7x+12=0的两个(OA>OB),点P从点B出发沿BA方向向点A匀速运动,速度为每秒1个单位长度,点Q从点A出发沿AO方向向点O匀速运动,速度为每秒2个单位长度,连结PQ.若设运动的时间为t秒(0<t<2).
(1)求AB长;
(2)当t为何值时,△APQ与△AOB相似?
(3)当t为何值时,△AQP的面积为3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线的对称轴与x轴交于点A.
(1)A的坐标为 (用含a的代数式表示);
(2)若抛物线与x轴交于P,Q两点,且PQ=2,求抛物线的解析式.
(3)点B的坐标为,若该抛物线与线段AB恰有一个公共点,结合函数图象,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】书法是我国的文化瑰宝,研习书法能培养高雅的品格.某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用A,B,C,D表示,并将测试结果绘制成如图两幅不完整的统计图.
请根据统计图中的信息解答以下问题:
(1)本次抽取的学生人数是 ,扇形统计图中A所对应扇形圆心角的度数是 .
(2)把条形统计图补充完整.
(3)若该学校共有2800人,等级达到优秀的人数大约有多少?
(4)A等级的4名学生中有3名女生1名男生,现在需要从这4人中随机抽取2人参加电视台举办的“中学生书法比赛”,请用列表或画树状图的方法,求被抽取的2人恰好是1名男生1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小阳在如图所示的扇形舞台上沿O-M-N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的
A.点Q B.点P C.点M D.点N
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com