【题目】如图,AB,AC是⊙O的弦,过点C作CE⊥AB于点D,交⊙O于点E,过点B作BF⊥AC于点F,交CE于点G,连接BE。
(1)求证:BE=BG;
(2)过点B作BH⊥AB交⊙O于点H,若BE的长等于半径,BH=4,AC=,求CE的长。
科目:初中数学 来源: 题型:
【题目】如图,在中,,米,米,动点以米/秒的速度从点出发,沿向点移动.同时,动点以米/秒的速度从点出发,沿向点移动.当其中有一点到达终点时,另一点也随之停止移动.设移动的时间为秒.
(1)①当秒时,求的面积;
②求的面积(米)关于时间(秒)的函数表达式.
(2)在点移动的过程中,当为何值时,为等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列一组方程:;;;;它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.
若也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;
请写出第n个方程和它的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连结DE交AC于点F,连结BF.
(1)求证:FB=FD;
(2)如图2,连结CD,点H在线段BE上(不含端点),且BH=CE,连结AH交BF于点N.
①判断AH与BF的位置关系,并证明你的结论;
②连接CN.若AB=2,请直接写出线段CN长度的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?
(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形ABCD沿着对角线BD折叠,使点C落在处,交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若,,求△BDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.
(1)求证:BD=BF;
(2)若AB=10,CD=4,求BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com