【题目】在平面直角坐标系
中,若点
和点
关于
轴对称,点
和点
关于直线
对称,则称点
是点
关于
轴,直线
的二次对称点.
![]()
(1)如图1,点
.
①若点
是点
关于
轴,直线
:
的二次对称点,则点
的坐标为________;
②若点
是点
关于
轴,直线
:
的二次对称点,则
的值为_______;
③若点
是点
关于
轴,直线
的二次对称点,则直线
的表达式为__________;
(2)如图2,
的半径为1.若
上存在点
,使得点
是点
关于
轴,直绩
:
的二次对称点,且点
在射线
上,
的取值范围是________;
(3)
是
轴上的动点,
的半径为2,若
上存在点
,使得点
是点
关于
轴,直线
:
的二次对称点,且点
在
轴上,求
的取值范围.
【答案】(1)①(4,-1);②2;③y=-x+1;(2)
;(3)
.
【解析】
(1)数形结合方法,直接结合图形求出即可;
(2)当M(-1,0)时,可求得b的最小值为
,当点
时,可求得b的最大值为
;
(3)确定t取最大值或最小值时,唯一对称点的位置,反过来计算即可.
(1)如图1,
![]()
①∵A(0,1);
∴点A关于x轴的对称点A′(0,-1),点A′(0,-1)关于直线l1:x=2的对称点为B(4,-1),
故答案为:(4,-1),
②∵A(0,1),
∴点A关于x轴的对称点A′(0,-1),点A′(0,-1)关于直线l2:y=2的对称点为C(0,5),
故答案为:2,
③∵点A关于x轴的对称点A′(0,-1),点A′(0,-1)与点D(2,1)关于直线l3对称,连接A′D,
∴直线l3⊥A′D,且平分A′D,易求得A′D的中点坐标为(1,0),易知:AD=AA′,
∴经过(0,1),(1,0)两点的直线即为直线l3,
∴y=-x+1;
故答案为:y=-x+1;
(2)如图2,
![]()
当M(-1,0)时,可求得b的最小值为
,
当点
时,可求得b的最大值为
,
∴
,
故答案为:
;
(3)∵E(0,t)为⊙E的圆心,半径为2,过点E作EN′⊥l5交x轴于点N′,
设直线l5:
与x轴交点为M,则
,当t取最大值时,依题意有:
,
解得: ![]()
设⊙E与y轴交点中最上方点为P,过P作PN″⊥l5交x轴于点N″,当t取最小值时有:
,
解得:t=1
∴
.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,连接BD,点E为CB边的延长线上一点,点F是线段AE的中点,过点F作AE的垂线交BD于点M,连接ME、MC.
(1)根据题意补全图形,猜想
与
的数量关系并证明;
(2)连接FB,判断FB 、FM之间的数量关系并证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形ABCD的对角线AC与BD相交于点O,将矩形沿对角线AC折叠,折叠后点B落在点E处,CE交AD于点F,连接DE.
(1)求证:
;
(2)当AB与BC满足什么数量关系时,四边形AODE是菱形?请说明理由;
(3)将图1中的矩形ABCD改为平行四边形ABCD,其它条件不变,如图2,若AB=
,∠ABC=30°,点E在直线AD上方,试探究:△AED是直角三角形时,BC的长度是多少.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系
中,点
,将点
向右平移6个单位长度,得到点
.
![]()
(1)直接写出点
的坐标;
(2)若抛物线
经过点
,求
的值;
(3)若抛物线
与线段
有且只有一个公共点时,求抛物线顶点横坐标
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚.对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.
收集数据 从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:
甲 26 32 40 51 44 74 44 63 73 74 81 54 62 41 33 54 43 34 51 63 64 73 64 54 33
乙 27 35 46 55 48 36 47 68 82 48 57 66 75 27 36 57 57 66 58 61 71 38 47 46 71
整理、描述数据 按如下分组整理、描述这两组样本数据
个数 株数 大棚 |
|
|
|
|
|
|
甲 | 5 | 5 | 5 | 5 | 4 | 1 |
乙 | 2 | 4 | 6 | 2 |
(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)
分析数据 两组样本数据的平均数、众数和方差如下表所示:
大棚 | 平均数 | 众数 | 方差 |
甲 | 53 | 54 | 3047 |
乙 | 53 | 57 | 3022 |
得出结论:(1)估计乙大棚产量优秀的秧苗数为__________株;
(2)可以推断出__________大棚的小西红柿秧苗品种更适应市场需求,理由为_____________________.(至少从两个不同的角度说明推断的合理性)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为6的正方形ABCD中,点E为AD边上的一个动点(与点A、D不重合),∠EBM=45°,BE交对角线AC于点F,BM交对角线AC于点G、交CD于点M.
(1)如图1,联结BD,求证:
,并写出
的值;
(2)联结EG,如图2,若设
,求y关于
的函数解析式,并写出函数的定义域;
(3)当M为边DC的三等分点时,求
的面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在
中,
,
,
,点
,
分别是边
,
的中点,连接
.将
绕点
按顺时针方向旋转,记旋转角为
.
(1)问题发现
①当
时,
;②当
时,
.
(2)拓展探究
试判断:当
时,
的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当
旋转至A、B、E三点共线时,直接写出线段
的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B、C的坐标分别为(-1,3)、(-4,1)、(-2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是( )
![]()
A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线
上一点
,
为
轴上一点,连接
,线段
绕点
逆时针旋转90°至线段
,过点
作直线
轴,垂足为
,直线
与直线
交于点
,且
,连接
,直线
与直线
交于点
,则点
的坐标为(______)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com