【题目】个体户小王在上周日以每千克4元买进金佛山鲜笋,进入农贸市场后共占5个摊位,每个摊位最多容纳鲜笋,每个摊位的市场管理价为每天20元,下表为本周内鲜笋每天的销售价格与前一天相比价格的涨跌情况(涨记为正,跌记为负).星期一的价格是在周日每千克4元买进价格基础上涨了1.3元.
星期 | 一 | 二 | 三 | 四 | 五 |
与前一天相比价格的涨跌情况/元 | +1.3 | -0.1 | +0.25 | +0.2 | -0.5 |
当天的交易量/ | 2500 | 2000 | 3000 | 1500 | 1000 |
(1)鲜笋销售最高价格为每千克多少元?
(2)小王在上周日以每千克4元买进金佛山解笋,进入批发市场后共占5个摊位,小王在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算?
【答案】(1)5.65元;(2)共赚了13325元.
【解析】
(1)计算出每天的价格即可作出判断;
(2)根据售价-进价-摊位费用=收益,列式计算即可.
解:(1)星期一的价格是:4+1.3=5.3元,星期二的价格是:5.3+(-0.1)=5.2元,星期三的价格是:5.2+0.25=5.45元,星期四的价格是:5.45+0.2=5.65元,星期五的价格是:5.65+(-0.5)=5.15元.
所以鲜笋销售最高价格为每千克5.65元;
(2)(2500×5.3-5×20)+ (2000×5.2-4×20)+ (3000×5.45-3×20)+ (1500×5.65-2×20)+ (1000×5.15-20)-10000×4
=13150+10320+16290+8435+5130-40000
=13325(元).
答:小王在本周的买卖中共赚了13325元.
科目:初中数学 来源: 题型:
【题目】已知两直线与
(1)在同一平面直角坐标系中作出两直线的图象;
(2)求出两直线的交点;
(3)根据图象指出x为何值时,;
(4)求这两条直线与x轴围成的三角形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了“绿化环境,美化家园”,3月12日(植树节)上午8点,某校901、902班同学同时参加义务植树.901班同学始终以同一速度种植树苗,种植树苗的棵数y1与种植时间x(小时)的函数图象如图所示;902班同学开始以1小时种植40棵的速度工作了1.5小时后,因需更换工具而停下休息半小时,更换工具后种植速度提高至原来的1.5倍.
(1)求902班同学上午11点时种植的树苗棵数;
(2)分别求出901班种植数量y1、902班种植数量y2与种植时间x(小时)之间的函数关系式,并在所给坐标系上画出y2关于x的函数图象;
(3)已知购买树苗不多于120棵时,每棵树苗的价格是20元;购买树苗超过120棵时,超过的部分每棵价格17元.若本次植树所购树苗的平均成本是18元,则两班同学上午几点可以共同完成本次植树任务?
【答案】(1)120棵;(2)见解析;(3)两班同学上午12点可以共同完成本次植树任务.
【解析】分析:直接进行计算即可.
用待定系数法求一次函数解析式即可, 902班的要分成3段.
当x=2时,两班同学共植树150棵,平均成本:不符合题意;,x>2,两班共植树(105x-60)棵.列出方程 求解即可.
详解:(1)902班同学上午11点时种植的树苗棵数为:
(棵)
(2)由图可知,y1是关于x的正比例函数,可设y1=k1x,经过(4,180),
代入可得
∴(x≥0),
,
y2关于x的函数图象如图所示.
(3)当x=2时,两班同学共植树150棵,
平均成本:
所以,x>2,两班共植树(105x-60)棵.
由题意可得:
解得:x=4.
,
所以,两班同学上午12点可以共同完成本次植树任务.
点睛:考查了待定系数法求一次函数解析式,一元一次方程的应用,注意分类讨论
的数学思想方法.
【题型】解答题
【结束】
23
【题目】在等腰直角△ABC中,,AC=BC,点P在斜边AB上(AP>BP).作AQ⊥AB,且AQ=BP,连结CQ(如图1).
(1)求证:△ACQ≌△BCP;
(2)延长QA至点R,使得∠RCP=45°,RC与AB交于点H,如图2.
①求证:CQ2=QA·QR ;
②判断三条线段AH、HP、PB的长度满足的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成绩按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
(1)在这次抽样调查中,一共抽取了______名学生;
(2)请把条形统计图补充完整;
(3)请估计该地区九年级学生体育成绩为B级的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有两定点A、B,点表示的数为6,点B在点A的左侧,且AB=20,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0).
(1)写出数轴上点B表示的数______,点P表示的数用含t的式子表示:_______;
(2)设点M是AP的中点,点N是PB的中点.点P在直线AB上运动的过程中,线段MN的长度是否会发生变化?若发生变化,请说明理由;若不变化,求出线段MN的长度.
(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发;当点P运动多少秒时?与点R的距离为2个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,延长AB至点E,延长CD至点F,使得,连接EF,分别交AD,BC于点M,N,连接AN,CM.
(1)求证:;
(2)四边形AMCN是平行四边形吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点D是BC边的中点,于点E,于点F.
(1)________(用含α的式子表示)
(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形,并写出DM与DN的数量关系,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线,直线分别与、交于点、,点在直线上,于点,过点作.则下列结论:
①与是对顶角;②;
③;④.
其中正确结论的个数是( )
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C是线段AB上一点,分别以AC、CB为边作等边三角形ACD和CBE,连结AE、BD,AE交DC、DB分别为F点、H点,BD交CE于G点,连结FG.求证:① ∠FAC=∠HDC ;② ∠HFG=∠HAC;③ ∠BHA=120 °.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com