【题目】如图,数轴上有两定点A、B,点表示的数为6,点B在点A的左侧,且AB=20,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0).
(1)写出数轴上点B表示的数______,点P表示的数用含t的式子表示:_______;
(2)设点M是AP的中点,点N是PB的中点.点P在直线AB上运动的过程中,线段MN的长度是否会发生变化?若发生变化,请说明理由;若不变化,求出线段MN的长度.
(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发;当点P运动多少秒时?与点R的距离为2个单位长度.
【答案】(1)-14,6-4t;(2)线段MN的长度不发生变化,MN的长度为10cm;(3)点P运动11秒或9秒时,与点R的距离为2个单位长度.
【解析】
(1)根据点B在点A的左侧及数轴上两点间距离公式即可得出点B表示的数,利用距离=速度×时间可表示AP的距离,即可表示出点P表示的数;
(2)根据中点的定义可求出AM、BN的长,根据MN=AB-BN-AM即可求出MN的长,即可得答案;
(3)利用距离=速度×时间可得出点R和点P表示的数,根据数轴上两点间距离公式列方程求出t值即可.
(1)∵点表示的数为6,点B在点A的左侧,且AB=20,
∴点B表示的数为6-20=-14,
∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,
∴点P表示的数为6-4t,
故答案为:-14,6-4t
(2)如图,∵点M是AP的中点,点P的速度为每秒4个单位长度,
∴AM=×4t=2t,
∵点N是PB的中点,
∴BN=×(20-4t)=10-2t,
∴MN=AB-BN-AM=20-(10-2t)-2t=10,
∴点P在直线AB上运动的过程中,线段MN的长度不发生变化,MN的长度为10cm.
(3)∵动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,
∴点R表示的数是-14-2t,
∵点P表示的数为6-4t,点P与点R的距离为2个单位长度.
∴PR==2,即=2,
解得:t=11或t=9,
∴点P运动11秒或9秒时,与点R的距离为2个单位长度.
科目:初中数学 来源: 题型:
【题目】根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高 ,,放入一个大球水面升高 ;
(2)如果要使水面上升到50,应放入大球、小球各多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= ______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】个体户小王在上周日以每千克4元买进金佛山鲜笋,进入农贸市场后共占5个摊位,每个摊位最多容纳鲜笋,每个摊位的市场管理价为每天20元,下表为本周内鲜笋每天的销售价格与前一天相比价格的涨跌情况(涨记为正,跌记为负).星期一的价格是在周日每千克4元买进价格基础上涨了1.3元.
星期 | 一 | 二 | 三 | 四 | 五 |
与前一天相比价格的涨跌情况/元 | +1.3 | -0.1 | +0.25 | +0.2 | -0.5 |
当天的交易量/ | 2500 | 2000 | 3000 | 1500 | 1000 |
(1)鲜笋销售最高价格为每千克多少元?
(2)小王在上周日以每千克4元买进金佛山解笋,进入批发市场后共占5个摊位,小王在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王大伯计划在自家的鱼塘里投放普通鱼苗和红色鱼苗,需要购买这两种鱼苗2000尾,购买这两种鱼苗的相关信息如下表:
品种项目 | 单价(元/尾) | 养殖费用(元/尾) |
普通鱼苗 | 0.5 | 1 |
红色鱼苗 | 1 | 1 |
设购买普通鱼苗x尾,养殖这些鱼苗的总费用为y元.
(1)写出y(元)与x(尾)之间的函数关系式;
(2)如果购买每种鱼苗不少于600尾,在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果关于x的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).
①方程是倍根方程;
②若是倍根方程,则;
③若点在反比例函数的图像上,则关于的方程是倍根方程;
④若方程是倍根方程,且相异两点, 都在抛物线上,则方程的一个根为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.
(1)出发多少秒后,PB=2AM?
(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.
(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com