精英家教网 > 初中数学 > 题目详情

【题目】根据图中给出的信息,解答下列问题:

1)放入一个小球水面升高 ,放入一个大球水面升高

2)如果要使水面上升到50,应放入大球、小球各多少个?

【答案】详见解析

【解析】

(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可。

(2)设应放入大球m个,小球n个,根据题意列一元二次方程组求解即可。

解:(1)设一个小球使水面升高x厘米,由图意,得3x=32﹣26,解得x=2。

设一个大球使水面升高y厘米,由图意,得2y=32﹣26,解得:y=3。

所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm。

(2)设应放入大球m个,小球n个,由题意,得

,解得:

答:如果要使水面上升到50cm,应放入大球4个,小球6个。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠DOE:∠BOE12,∠AOC:∠DOC21,如果∠AOB87°,那么∠COE_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,为直线上一点,作射线,使,将一个直角三角尺如图摆放,直角顶点在点处,一条直角边在射线. 将图中的三角尺绕点以每秒10°的速度按逆时针方向旋转(如图②所示),在旋转一周的过程中,第秒时,所在直线恰好平分,则的值为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:

自选项目

人数

频率

立定跳远

9

0.18

三级蛙跳

12

a

一分钟跳绳

8

0.16

投掷实心球

b

0.32

推铅球

5

0.10

合计

50

1

(1)求a,b的值;

(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;

(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级共有800名学生,准备调查他们对低碳知识的了解程度.

1)在确定调查方式时,团委设计了以下三种方案:

方案一:调查八年级部分女生;

方案二:调查八年级部分男生;

方案三:到八年级每个班去随机调查一定数量的学生.

请问其中最具有代表性的一个方案是_____

2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图、图所示),请你根据图中信息,将两个统计图补充完整;

3)请你估计该校八年级约有多少名学生比较了解低碳知识.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了“绿化环境,美化家园”,312日(植树节)上午8点,某校901、902班同学同时参加义务植树.901班同学始终以同一速度种植树苗种植树苗的棵数y1与种植时间x(小时)的函数图象如图所示;902班同学开始以1小时种植40棵的速度工作了1.5小时后,因需更换工具而停下休息半小时更换工具后种植速度提高至原来的1.5倍.

(1)902班同学上午11点时种植的树苗棵数;

(2)分别求出901班种植数量y1、902班种植数量y2与种植时间x(小时)之间的函数关系式,并在所给坐标系上画出y2关于x的函数图象;

(3)已知购买树苗不多于120棵时,每棵树苗的价格是20元;购买树苗超过120棵时,超过的部分每棵价格17元.若本次植树所购树苗的平均成本是18元,则两班同学上午几点可以共同完成本次植树任务?

【答案】(1)120棵;(2)见解析;(3)两班同学上午12点可以共同完成本次植树任务.

【解析】分析:直接进行计算即可.

用待定系数法求一次函数解析式即可, 902班的要分成3.

x=2时,两班同学共植树150棵,平均成本:不符合题意;,x>2,两班共植树(105x-60)棵.列出方程 求解即可.

详解:(1)902班同学上午11点时种植的树苗棵数为:

(棵)

(2)由图可知,y1是关于x的正比例函数,可设y1=k1x,经过(4,180),

代入可得

x≥0),

,

y2关于x的函数图象如图所示.

(3)当x=2时,两班同学共植树150棵,

平均成本:

所以,x>2,两班共植树(105x-60)棵.

由题意可得:

解得:x=4.

,

所以,两班同学上午12点可以共同完成本次植树任务.

点睛:考查了待定系数法求一次函数解析式,一元一次方程的应用,注意分类讨论

的数学思想方法.

型】解答
束】
23

【题目】在等腰直角△ABC中,,AC=BC,点P在斜边AB上(AP>BP.作AQAB,且AQ=BP,连结CQ(如图1).

(1)求证:△ACQBCP

(2)延长QA至点R,使得∠RCP=45°,RCAB交于点H,如图2.

求证:CQ2=QA·QR

判断三条线段AHHPPB的长度满足的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】特殊两位数乘法的速算——如果两个两位数的十位数字相同,个位数字相加为10,那么能立说出这两个两位数的乘积.如果这两个两位数分别写作ABAC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A(A+1)的乘积,后两位数字就是BC的乘积.

如:47×43=2021,61×69=4209.

(1)请你直接写出83×87的值;

(2)设这两个两位数的十位数字为x(x>3),个位数字分别为yz(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.

(3)99991×99999=___________________(直接填结果)

【答案】7221

【解析】分析:套用上面的归纳总结代入数据,即可得出结论;

利用上面总结的结论套入数据表示出该两个两位数的成绩,在将等式展开合并同类项得出左边=右边,从而证明结论成立.

直接运算即可.

详解:(1)8387满足题中的条件,即十位数都是8,8>3,且个位数字分别是37,之和为10,那么它们的乘积是一个4位数,前两位数字是89的乘积,后两位数字就是37的乘积,因而,答案为:7221.

(2) 这两个两位数的十位数字为x(x>3),个位数字分别为yz,则由题知y+z=10,

因而有:(10x+y)(10x+z)=100x2+10xz+10xy+yz

=100x2+10x(y+z)+yz,

=100x2+100x+yz,

=100x(x+1)+yz.

(3)9999000009.

点睛:通过阅读题干掌握题中所给信息得出推理方法,然后通过多项式的展开式得出答案.学生应熟练掌握归纳推理的数学思想.

型】解答
束】
19

【题目】为了大力弘扬和践行社会主义核心价值观,某乡镇在一条公路旁的小山坡上,树立一块大型标语牌AB,如图所示,标语牌底部B点到山脚C点的距离BC为20米,山坡的坡角为30°. 某同学在山脚的平地F处测量该标语牌的高,测得点C到测角仪EF的水平距离CF = 1.7米,同时测得标语牌顶部A点的仰角为45°,底部B点的仰角为20°,求标语牌AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有两定点AB,点表示的数为6,点B在点A的左侧,且AB=20,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0.

1)写出数轴上点B表示的数______,点P表示的数用含t的式子表示:_______

2)设点MAP的中点,点NPB的中点.P在直线AB上运动的过程中,线段MN的长度是否会发生变化?若发生变化,请说明理由;若不变化,求出线段MN的长度.

3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点PR同时出发;当点P运动多少秒时?与点R的距离为2个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点为平面内一点.

1)如图1互余,小明说过,很容易说明。请帮小明写出具体过程;

2)如图2,当点在线段上移动时(点两点不重合),指出的数量关系?请说明理由;

3)在(2)的条件下,若点两点外侧运动(点三点不重合)请直接写出的数量关系.

查看答案和解析>>

同步练习册答案