【题目】对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①a+c=0,方程ax2+bx+c=0,有两个不相等的实数;②若方程ax2+bx+c=0有两个不相等的实根.则方程cx2+bx+a=0也一定有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2-4ac=(2am+b)2成立,其中正确的结论是_____.(把你认为正确结论的序号都填上)
【答案】①④
【解析】
①根据根的判别式即可作出判断;
②方程有两个不相等的实数根,则,当c=0时,cx2+bx+a=0为一元一次方程;
③若c是ax2+bx+c=0的一个根,则代入即可作出判断;
④若m是方程ax2+bx+c=0的一个根,则方程有实根,判别式,结合m是方程的根,代入一定成立,即可作出判断.
①根据公式法解一元二次方程可知,若a+c=0,且a≠0,∴a,c异号,∴,故此时有两个不相等的实数根,故选项①正确;
②若c=0,b≠0,则,∴方程ax2+bx+c=0有两个不相等的实数根,方程cx2+bx+a=0仅有一个解,故选项②错误;
③将x=c代入方程ax2+bx+c=0,可得,即,解得c=0或ac+b+1=0,因此ac+b+c=0不一定成立,故选项③错误;
④∵m是方程ax2+bx+c=0的一个根,∴am2+bm+c=0,此时
,故选项④正确
故答案为:①④.
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点,若直角MDN绕点D旋转,分别交AC于点E,交BC于F,则下列说法:①AE=CF;②EC+CF=4;③DE=DF;④若△ECF面积为一个定值,则EF长也是一个定值,其中正确的结论是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.为了解某市中学生的体能状况,应采用普查的方式
B.“打开电视机,正在播放足球比赛”是必然事件
C.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上
D.两运动员10次射击成绩的平均数相同,则方差小的运动员成绩更稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售一种商品,通过记录,发现该商品从开始销售至销售的第x天结束时(x为整数)的总销量y(件)满足二次函数关系,销量情况记录如下表:
x | 0 | 1 | 2 | 3 |
y | 0 | 58 | 112 | 162 |
(1)求y与x之间的函数关系式(不需要写自变量的取值范围);
(2)求:销售到第几天结束时,该商品全部售完?
(3)若第m天的销量为22件,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.
(1)求A、B两种型号的自行车单价分别是多少元?
(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套,设销售单价为x(x60)元,销售量为y套.
(1)求出y与x的函数关系式;
(2)当销售单价为多少元时,且销售额为14000元?
(3)当销售单价为多少元时,才能在一个月内获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.
(1)m= %,这次共抽取了 名学生进行调查;并补全条形图;
(2)请你估计该校约有 名学生喜爱打篮球;
(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.
(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该商品每天的销售利润最大;
(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.
方案A:每件商品涨价不超过5元;
方案B:每件商品的利润至少为16元.
请比较哪种方案的最大利润更高,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数过点,直线与轴交于点,过点作轴的垂线交反比例函数图象于点.
(1)求的值与点的坐标;
(2)在平面内有点,使得以,,,四点为顶点的四边形为平行四边形,试写出符合条件的所有点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com