精英家教网 > 初中数学 > 题目详情

【题目】(本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.

(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度数.
②若⊙O的半径为2 ,求线段EF的长.

【答案】
(1)

解:∵直线与⊙O相切,

∴OC⊥CD;

又∵AD⊥CD,

∴AD//OC,

∴∠DAC=∠OCA;

又∵OC=OA,

∴∠OAC=∠OCA,

∴∠DAC=∠OAC;

∴AC平分∠DAO.


(2)

解:①∵AD//OC,∠DAO=105°,

∴∠EOC=∠DAO=105°;

∵∠E=30°,

∴∠OCE=45°.

②作OG⊥CE于点G,可得FG=CG,

∵OC=2,∠OCE=45°.

∴CG=OG=2,

∴FG=2;

∵在RT△OGE中,∠E=30°,

∴GE=2,

∴EF=GE-FG=2-2.


【解析】(1)利用了切线的性质,平行线的判定和性质,等边对等角,角平分线的判定即可得证。
(2)①根据(1)得出的AD//OC,从而得出同位角相等,再利用三角形的内角和定理即可求出答案;②作OG⊥CE于点G,可得FG=CG,根据等边对等角得出CG=OG=FG=2,在根据勾股定理得出GE,从而求出EF=GE-FG.
【考点精析】认真审题,首先需要了解平行线的判定与性质(由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质),还要掌握三角形的内角和外角(三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读理解填空,并在括号内填注理由.

如图,已知ABCDMN分别交ABCD于点EF,∠1=∠2,求证:EPFQ

证明:∵ABCD   

∴∠MEB=∠MFD   ).

又∵∠1=∠2   

MEB﹣∠1=∠MFD﹣∠2   

即:∠MEP=∠   

EP   .(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】,交平分,交

1)求证:

2)求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课堂上学习了勾股定理后,知道勾三、股四、弦五.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股 数的勾都是奇数,且从 3 起就没有间断过,于是王老师提出以下问题让学生解决.

(1)请你根据上述的规律写出下一组勾股数:11、________、________;

(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?小明发现每组第二个数有这样的规律4=,12=,24=……,于是他很快表示了第二数为 ,则用含a的代数式表示第三个数为________;

(3)用所学知识证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.

(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;

(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知直线l1l2,且l3l1l2分别交于AB两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是____

(2)如图②,点AB处北偏东40°方向,在C处北偏西45°方向,则∠BAC____°.

(3)如图③,∠ABD和∠BDC的平分线交于点EBEAB于点F,∠1+∠290°,试说明:ABAB,并探究∠2与∠3的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h(甲车休息前后的速度相同),甲、乙两车行驶的路程y(km)与行驶的时间x(h)的函数图象如图所示.根据图象的信息有如下四个说法:甲车行驶40千米开始休息乙车行驶3.5小时与甲车相遇甲车比乙车晚2.5小时到到B两车相距50km时乙车行驶了小时,其中正确的说法有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们来定义下面两种数:

(一)平方和数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=(最左边数)2+(最右边数)2,我们就称该整数为平方和数.

例如:对于整数251.它中间的数字是5,最左边数是2,最右边数是1

是一个平方和数

又例如:对于整数3254,它的中间数是25,最左边数是3,最右边数是4

是一个平方和数.当然1524253这两个数也是平方和数;

(二)双倍积数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=最左边数最右边数,我们就称该整数为双倍积数.

例如:对于整数163,它的中间数是6,最左边数是1,最右边数是3

是一个双倍积数,

又例如:对于整数3305,它的中间数是30,最左边数是3,最右边数是5

是一个双倍积数,当然3615303这两个数也是双倍积数.

注意:在下面的问题中,我们统一用字母表示一个整数分拆出来的最左边数,用字母表示该整数分拆出来的最右边数,请根据上述定义完成下面问题:

1)①若一个三位整数为平方和数,且十位数为4,则该三位数为________

②若一个三位整数为双倍积数,且十位数字为 6 ,则该三位数为_________

③若一个整数既为平方和数,又是双倍积数,则应满足的数量关系为_______

2)若(即这是个最左边数为,中间数为565,最右边数为的整数,以下类同)是一个平方和数,是一个双倍积数,求的值.

3)从所有三位整数中任选一个数为双倍积数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ADBC,∠A=∠C50°,线段AD上从左到右依次有两点EF(不与AD重合)

1ABCD是什么位置关系,并说明理由;

2)观察比较∠1、∠2、∠3的大小,并说明你的结论的正确性;

3)若∠FBD:∠CBD14BE平分∠ABF,且∠1=∠BDC,求∠FBD的度数,判断BEAD是何种位置关系?

查看答案和解析>>

同步练习册答案