精英家教网 > 初中数学 > 题目详情

【题目】已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.
(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长

(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.
①判断OQ与AC的位置关系,并说明理由;
②求线段PQ的长.

【答案】
(1)

解:(1)如图①,连接OQ.

∵线段PQ所在的直线与⊙O相切,点Q在⊙O上,

∴OQ⊥OP.

又∵BP=OB=OQ=2,

∴PQ===,即PQ=.


(2)

解:OQ⊥AC.理由如下:

如图②,连接BC.

∵BP=OB,

∴点B是OP的中点,

又∵PC=CQ,

∴点C是PQ的中点,

∴BC是△PQO的中位线,

∴BC∥OQ.

又∵AB是直径,

∴∠ACB=90°,即BC⊥AC,

∴OQ⊥AC.

如图②,PCPQ=PBPA,即PQ2=2×6,

解得PQ=


【解析】(1)如图①,连接OQ.利用切线的性质和勾股定理来求PQ的长度.
(2)如图②,连接BC.利用三角形中位线的判定与性质得到BC∥OQ.根据圆周角定理推知BC⊥AC,所以,OQ⊥AC.
(3)利用割线定理来求PQ的长度即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点P(a+1,﹣+1)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.

(1)当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点.若AC=10,DC=,则BO= ,∠EBD的大小约为  分.(参考数据:tan26°34′≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是(  )

A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.

(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D
(2)证明四边形ABCD是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是AB延长线上的一点,CD与半圆O相切于点D,连接AD,BD.

(1)求证:∠BAD=∠BDC;
(2)若∠BDC=28°,BD=2,求⊙O的半径.(精确到0.01)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中是中心对称图形的是
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案