【题目】如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.
(1)求抛物线y2的解析式;
(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】
(1)应用待定系数法求解析式;
(2)设出点T坐标,表示△TAC三边,进行分类讨论;
(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与△AMG全等,分类讨论对应边相等的可能性即可.
(1)由已知,c=,
将B(1,0)代入,得:a﹣=0,
解得a=﹣,
抛物线解析式为y1=x2- x+,
∵抛物线y1平移后得到y2,且顶点为B(1,0),
∴y2=﹣(x﹣1)2,
即y2=-x2+ x-;
(2)存在,
如图1:
抛物线y2的对称轴l为x=1,设T(1,t),
已知A(﹣3,0),C(0,),
过点T作TE⊥y轴于E,则
TC2=TE2+CE2=12+()2=t2﹣t+,
TA2=TB2+AB2=(1+3)2+t2=t2+16,
AC2=,
当TC=AC时,t2﹣t+=,
解得:t1=,t2=;
当TA=AC时,t2+16=,无解;
当TA=TC时,t2﹣t+=t2+16,
解得t3=﹣;
当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形;
(3)如图2:
设P(m,),则Q(m,),
∵Q、R关于x=1对称
∴R(2﹣m,),
①当点P在直线l左侧时,
PQ=1﹣m,QR=2﹣2m,
∵△PQR与△AMG全等,
∴当PQ=GM且QR=AM时,m=0,
∴P(0,),即点P、C重合,
∴R(2,﹣),
由此求直线PR解析式为y=﹣x+,
当PQ=AM且QR=GM时,无解;
②当点P在直线l右侧时,
同理:PQ=m﹣1,QR=2m﹣2,
则P(2,﹣),R(0,﹣),
PQ解析式为:y=﹣;
∴PR解析式为:y=﹣x+或y=﹣.
科目:初中数学 来源: 题型:
【题目】如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,
(1)请求出抛物线的解析式;
(2)连接OB,与抛物线交于点M,请求出M点坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两辆汽车沿同一条路赶赴距离的某景区.甲匀速行驶一段时间出现故障,停车检修后继续行驶.图中折线、线段分别表示甲、乙两车所行的路程与甲车出发时间之间的关系,则下列结论中正确的个数是( )①甲车比乙车早出发2小时;②图中的;③两车相遇时距离目的地;④乙车的平均速度是;⑤甲车检修后的平均速度是.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 某校行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生听写结果.以下是根据抽查绘制的统计图的一部分.
组别 | 正确字数x | 人数 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根据以上信息解决下列问题:
(1)这次抽样调查的样本容量是______,并补全条形统计图;
(2)扇形统计图中“C组”所对应的圆心角的度数是______;
(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图.
(1)求n并补全条形统计图;
(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;
(3)从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(-,0),B(0,3),C(0,-1)三点.
(1)求线段BC的长度;
(2)若点D在直线AC上,且DB=DC,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=x-3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.
(1)填空:n的值为 ,k的值为 ;
(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;
(3)观察反比函数y=的图象,当y≥-2时,请直接写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2013BC的平分线与∠A2013CD的平分线交于点A2014,得∠A2014CD,则∠A2014=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB=AC,∠BAC=120°,AC 的垂直平分线交 BC 于 F,交 AC 于 E,交 BA 的延长线于 G,若 EG=3,则 BF 的长是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com