精英家教网 > 初中数学 > 题目详情
2.抛物线y=ax2向左平移1个单位,再向下平移8个单位且y=ax2过点(1,2),则平移后的解析式为y=(x+1)2-8.

分析 首先利用待定系数法求得抛物线的解析式,然后直接根据“上加下减,左加右减”的平移规律进行解答.

解答 解:∵抛物线y=ax2过点(1,2),
∴2=a×12=a,即a=2.
∴该抛物线的解析式为:y=2x2
∴顶点坐标为(0,0),而点(0,0)先向左平移1个单位,再向下平移8个单位得到对应点的坐标为(-1,-8),所以平移后的抛物线解析式为y=(x+1)2-8.
故答案为:y=(x+1)2-8.

点评 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.解不等式组:$\left\{\begin{array}{l}2x-1>5\\ \frac{3x-7}{2}+1≤x\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知关于x,y的方程组$\left\{\begin{array}{l}{2x+3y=m}\\{3x+4y=2m+6}\end{array}\right.$的解满足x+y=2,则m=-4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,边长为4的正方形ABCD的四个顶点分别在y=$\frac{{k}_{1}}{x}$,y=$\frac{{k}_{2}}{x}$,y=$\frac{{k}_{3}}{x}$,y=$\frac{{k}_{4}}{x}$上,且AB与y轴平行,则k1-k2+k3-k4的值为-16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,正方形ABCD内有一点P,连接AP,BP,CP,若AP=1,BP=2,CP=3.
(1)求∠APB的度数;
(2)求正方形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.求下列分式的最简公分母:$\frac{3}{{x}^{2}-18x+81}$,$\frac{2}{81-{x}^{2}}$,$\frac{1}{{x}^{2}+18x+81}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.用因式分解法解下列方程:
(1)(x+2)(x-4)=0;
(2)4x(2x+1)=3(2x+1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,把一块边长为6的正方形纸片ABCD沿着PQ翻折,使顶点A恰好与CD边上的点E重合,若DE=2,则折痕PQ=2$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,后求值:$({x^2}-\frac{{{x^3}+4x-4}}{x+1})÷\frac{x-2}{x+1}$,再任选一个你喜欢的数x代入求值.

查看答案和解析>>

同步练习册答案