精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形中,对角线交于点,以为邻边作平行四边形,连接

1)求证:四边形是菱形;

2)若,求四边形的面积.

【答案】1)证明见解析;(2

【解析】

1)先证明四边形AOBE是平行四边形,再证明ABOE即可;

2)根据∠EAO+DCO=180°,以及矩形性质可求得∠EAO=120°,求出AEO面积,利用四边形ADOE的面积等于AEO面积的2倍即可求解.

1)∵四边形ABCD是矩形,

DO=BO

∵四边形ADOE是平行四边形,

AEDOAE=DOADOE

AEBOAE=BO

∴四边形AOBE是平行四边形.

ADABADOE

ABOE

∴四边形AOBE是菱形;

2)设ABEO交点为M

ABCD

∴∠DCO=BAO

∵四边形AOBE是菱形,

∴∠EAO=2BAO

∵∠EAO+DCO=180°

∴∠EAO=120°,∠EAM=60°

AM=AB=

BM=

MO=

EO=

∴△AEO面积为:

∴四边形ADOE面积=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O是矩形ABCD的中心,EAB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为(  )

A. B. C. D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是正△ABC内一点,OA=3OB=4OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;OO′的距离为4③∠AOB=150°④S四边形AOBO⑤SAOC+SAOB=.其中正确的结论是(  )

A.①②③⑤B.①②③④C.①②③④⑤D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(03),点Ax轴的正半轴上,直线yx1交边ABOA于点DM,反比例函数的图象经过点D,与BC的交点为N

1)求BN的长.

2)点P是直线DM上的动点(点P不与点D、点M重合),连接PBPCMN,当△BCP的面积等于四边形ABNM的面积时,求点P的坐标.

3)在(2)的条件下,连接CP,以CP为边作矩形CPEF,使矩形的对角线的交点G落在直线DM上,请写出点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴交于点,与x轴负半轴交于B,与正半轴交于点,且

1)求该二次函数解析式;

2)若是线段上一动点,作,交于点,连结面积最大时,求点的坐标;

3)若点轴上方的抛物线上的一个动点,连接,设所得的面积为.问:是否存在一个的值,使得相应的点有且只有个,若有,求出这个的值,并求此时点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴交于三点,其中,抛物线的顶点为

1)求的值及顶点的坐标;

2)如图1,若动点在第一象限内的抛物线上,动点在对称轴上,当,且时,求此时点的坐标;

3)如图2,若点是二次函数图像上对称轴右侧一点,设点到直线的距离为,到抛物线的对称轴的距离为,当时,请求出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场按定价销售某种商品时,每件可获利100元;按定价的八折销售该商品5件与将定价降低50元销售该商品6件所获利润相等.

(1)该商品进价、定价分别是多少?

(2)该商场用10000元的总金额购进该商品,并在五一节期间以定价的七折优惠全部售出,在每售出一件该商品时,均捐献元给社会福利事业,该商场为能获得不低于3000元的利润,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某建筑物BC顶部有一旗杆AB,且点ABC在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE1.56mEC=21m,求旗杆AB的高度和建筑物BC的高度(结果精确到0.1m).参考数据:sin47°≈0.73cos47°≈0.68tan47°≈1.07sin42°≈0.67cos42°≈0.74tan42°≈0.90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的个数是(

①为了了解一批灯泡的使用寿命,应采用全面调查的方式

②一组数据5676 810的众数和中位数都是6

③已知关于x的一元二次方程(x+12m=0有两个实数根,则m的取值范围是m≥0

④式子有意义的条件是

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案