【题目】在中,,点分别是边的中点,连接,
(1)如图①,当时,绕点逆时针旋转得到,连接、,在旋转过程中请猜想:______(直接写出答案);
(2)如图②,当时,绕点逆时针旋转得到,连接、,在旋转过程中请猜想:的比值,并证明你的猜想;
(3)如图③,当时,绕点逆时针旋转得到,连接、,请直接写出在旋转过程中的比值.(用含的代数式表示)
【答案】(1)1;(2);理由见解析;(3)的比值是定值,,理由见解析.
【解析】
(1)如图①中,利用等边三角形的性质证明即可.
(2)结论:,证明即可解决问题.
(3)结论:的比值是定值, 证明方法类似(2).
解:(1)如图①中, ∵CA=CB,∠CAB=60°,
∴△ACB是等边三角形,
点分别是边的中点,
AD=DC,AE=EB,
∴△AED,都是等边三角形,
∴ AC=AB,
∴
∴(SAS),
∴,
∴
故答案为1.
(2)
理由:如图②中,连接
∵,点是边的中点,
∴,,,
∴,
在中,
∵,,
∴
∴,
∴,
∵,,,
∴,
又∵,
∴,
∴;
(3)的比值是定值,.
理由:如图③中,连接EC.
∵CA=CB,AE=EB,
∴CE⊥AB,
∴
同法可证:
∴
的比值是定值,.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=6,BC=4,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.以点D为圆心,适当长为半径画弧,交DA于点G,交DC于点H.再分别以点G、H为圆心,大于GH的长为半径画弧,两弧在∠ADC内部交于点Q,连接DQ并延长与AM交于点F,则DF的长度为( ).
A.6B.C.D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点, 在反比例函数(m为常数)的图象上,连接AO并延长与图象的另一支有另一个交点为点C,过点A的直线l与x轴的交点为点,过点C作CE∥x轴交直线l于点E.
(1)求m的值,并求直线l对应的函数解析式;
(2)求点E的坐标;
(3)过点B作射线BN∥x轴,与AE交于点M (补全图形),求证:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AB=10,tanA=.点P是斜边AB上一个动点,过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q.设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为 2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD中,AD∥BC,AB=BC=4,∠B=60°,∠C=105°,点E为BC的中点,以CE为弦作圆,设该圆与四边形ABCD的一边的交点为P,若∠CPE=30°,则EP的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+bx+c与x轴交于点A(4,﹣5).
(1)如图,过点A分别向x轴、y轴作垂线,垂足分别为B、C,得到矩形ABOC,且抛物线经过点C.
①求抛物线的解析式.
②将抛物线沿直线x=m(2>m>0)翻折,分别交线段OB、AC于D,E两点.若直线DE刚好平分矩形ABOC的面积,求m的值.
(2)将抛物线旋转180°,使点A的对应点为A1(m﹣2,n﹣4),其中m≤2.若旋转后的抛物线仍然经过点A,求旋转后的抛物线顶点所能达到最低点时的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在矩形ABCD中,AB=6,BC=9,点E是BC边上一动点,连接AE、DE ,作△ECD的外接⊙O,交AD于点F,交AE于点G,连接FG.
(1)求证△AFG∽△AED;
(2)当BE的长为 时,△AFG为等腰三角形;
(3)如图②,若BE=1,求证:AB与⊙O相切.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com