【题目】已知二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是经过点(-1,0)且平行于y轴的直线.
(1)求m,n的值;
(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA∶PB=1∶5,求一次函数的表达式.
【答案】(1)m=2,n=-2;(2)一次函数的表达式为y=x+4.
【解析】试题分析:(1)利用对称轴公式求得,把代入二次函数进而就可求得;
(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得的纵坐标,代入二次函数的解析式中求得的坐标,然后利用待定系数法就可求得一次函数的表达式.
试题解析:(1)由题意得解得
(2)如图,分别过点P,B作x轴的垂线,垂足分别为C,D,则PC∥BD,
△APC∽△ABD,
.
PA∶PB=1∶5,PC=1,
,
BD=6.
令x2+2x-2=6,
解得:x1=2,x2=-4(舍去),
点B坐标为(2,6),
解得
一次函数的表达式为y=x+4.
科目:初中数学 来源: 题型:
【题目】某校初二数学兴趣小组活动时,碰到这样一道题:
“已知正方形,点分别在边上,若,则”.
经过思考,大家给出了以下两个方案:
(甲)过点作交于点,过点作交于点;
(乙)过点作交于点,作交的延长线于点;同学们顺利地解决了该题后,大家琢磨着想改变问题的条件,作更多的探索.
(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1);
图1 图2
(2)如果把条件中的“”改为“与的夹角为”,并假设正方形的边长为l,的长为(如图2),试求的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,斜边AB=8,点P在以AC为直径的半圆上,M为PB的中点,当点P沿半圆从点A运动至点C时,点M运动的路径长是( )
A. 2π B. π C. 2π D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某校田径队25人年龄的平均数和中位数都是16岁,但是后来发现其中有一位同学的年龄登记错误,将17岁写成了19岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( )
A. a>16,b=16 B. a>16,b<16 C. a<16,b<16 D. a<16,b=16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形的对角线分别为 x、y,一边长为 12,则 x、y 的值可能是( )
A.8 与 14B.10 与 14C.18 与 20D.4 与 28
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某货船以24海里/时的速度将一批重要物资从处运往正东方向的M处,在点处测得某岛在北偏东的方向上.该货船航行分钟后到达处,此时再测得该岛在北偏东的方向上,已知在岛周围海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,D、E、F是△ABC三边的中点,下列结论:①四边形AEDF,BDEF,CDFE都是平行四边形;②△ABC∽△DEF;③S△ABC=2S△DEF;④△DEF的周长是△ABC周长的一半,其中正确的序号是( )
A. ①②④ B. ①②③ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】心理学家研究发现,一般情况下,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力y随时间t(分钟)的变化规律有如下关系式: (y值越大表示接受能力越强)
(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,何时学生的注意力更集中;
(2)讲课开始后多少分钟,学生的注意力最集中能持续多少分钟;
(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是BC边的中点,点E,F分别在AC,AB上,且DE∥AB,EF∥BC.
(1)求证:CD=EF;
(2)已知∠ABC=60°,连接BE,若BE平分∠ABC,CD=6,求四边形BDEF的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com